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Abstract: In the modern world, all manufacturers strive for the optimal design of their products.
This general trend is recently also observed in the corrugated board packaging industry. Colorful
prints on displays, perforations in shelf-ready-packaging and various types of ventilation holes in
trays, although extremely important for ergonomic or functional reasons, weaken the strength of
the box. To meet the requirements of customers and recipients, packaging manufacturers outdo
each other with new ideas for the construction of their products. Often the aesthetic qualities of the
product become more important than the attention to maintaining the standards of the load capacity
of the packaging (which, apart from their attention-grabbing functions, are also intended to protect
transported products). A particular flaps design (both top and bottom) and its influence on the
strength of the box are investigated in this study. An updated analytical–numerical approach is used
here to predict the strength of packaging with various flap offsets. Experimental results indicated a
significant decrease in the static load-bearing capacity of packaging in the case of shifted flap creases.
The simulation model proposed in our previous work has been modified and updated to take into
account this effect. The results obtained by the model presented in this paper are in satisfactory
agreement with the experimental data.

Keywords: corrugated board; box strength estimation; packaging flaps; crease line shifting

1. Introduction

The relentless increase in consumption all around the contemporary world is reflected
in the significant growth in the production of various goods. This, in turn, entails the
necessity of their packing, safe storing and transportation to any destination. Due to
growing ecological awareness and concern for the environment, the perfect choice is
undoubtedly corrugated cardboard boxes. The undeniable facts are that they are recyclable,
easy for disposal, ecological, durable under appropriate conditions and easy to store in
a flat form after manufacturing. Among their numerous advantages, one cannot fail to
mention the easy imprint of brand names on them. This is highly useful in cases of shelf-
ready packaging (SRP) or retail-ready packaging (RRP) when, after being transported to the
site, the packaged products are placed directly on the shelves. Upon opening the cardboard
boxes along the specially designed and made perforations, products are ready to purchase.
Such a solution is a huge time-saver for large companies.

In the case of individual recipients of merchandise, especially when shopping online
(which nowadays is a significant part of the sales market), a very important factor is the
possibility of smoothly returning purchased products if the consumer is not satisfied, for a
range of reasons. Retailers that offer reusable packaging to send back purchased goods
are very competitive on the market. Again, corrugated cardboard boxes are perfect in
such situations. They are easy to open thanks to well thought-out perforations and, after
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re-sealing with the built-in adhesive strip, are ready to send back. However, it must not be
forgotten that the packaging must have sufficient durability to survive the return transport.

Therefore, in view of the above, scientific research while applying analytical as well as
numerical methods and/or laboratory tests has been an inherent part of a separate branch
of industry, i.e., the production of corrugated cardboard packaging, for many years.

The proper mechanical strength of the paperboard or corrugated cardboard boxes is
directly connected with two characteristic in-plane directions of orthotropy. Machine direc-
tion (MD) is perpendicular to the main axis of the fluting and parallel to the paperboard
fiber alignment, whilst cross direction (CD) is parallel to the fluting. In order to examine
the strength of corrugated cardboard boxes, one can perform some fundamental physical
tests, i.e., compressive, tensile or bursting strength tests, which, in practical terms, are the
most significant. The most prevalent are the box compression test (BCT) and the edge crush
test (ECT) for corrugated cardboard.

A significant impact on the load-bearing capacity of packages is undoubtedly the
various perforations, openings and flap locations on corrugated cardboard boxes. The
first two issues have been meticulously discussed by Garbowski et al. in [1] and [2],
respectively. In the present study, the influence of the flap locations on the strength of
corrugated cardboard boxes, as another article in a series, is discussed. The conducting of
physical experiments usually involves a great deal of time and cost. Therefore, recently,
other methods of testing corrugated boxes have emerged to determine their strength by
physical testing only.

Alternatively, the compressive strength of boxes can be assessed based on formulae
that have been presented in numerous literatures. Their adoption, thanks to their simplicity,
results in quick and easy solutions for practical applications. Moreover, no additional
experiments are necessary. The parameters that are introduced in these formulae can be
systemized into three groups: paper, board and box parameters [3]. In the first group
one can specify: the ring crush test (RCT), Concora liner test (CLT), liner type, weights
of liner and fluting, corrugation ratio and a constant related to fluting. In the second one:
thickness, flexural stiffnesses in MD and CD, ECT and moisture content. Finally, in the
third: dimensions and perimeter of the box, applied load ratio, stacking time, buckling ratio
and printed ratio. Nearly 70 years ago, the paper (RCT, flute constant) and box (perimeter,
box constant) parameters were applied for the prediction of boxes’ compressive strength in
the formula presented by Kellicutt and Landt [4]. The dependence of critical force on paper
parameters (CLT, type of liner) and cardboard box dimensions in the BCT was presented
in [5].

Generally applicable in the packaging industry is the procedure proposed by McKee
et al. [6], in which the parameters of the paperboard (ECT, flexural stiffnesses) and the
box perimeter were introduced. Nevertheless, the provided formula is applicable only
for comparatively simple boxes. Throughout the years, many scientists endeavored to
broaden the applicability of the McKee’s analytical formulae. Allerby et al. [7] modified
the constants and exponents in the above-mentioned approach. Schrampfer et al. [8], in
turn, amended McKee’s approach by extending the possibility of implementing a broader
range of cutting methods and equipment. Batelka and Smith [9] enhanced the relationship
with the dimensions of the box and Urbanik and Frank [10] introduced the Poisson’s ratio
as well. The arbitrary chosen constant value as a parameter in the McKee’s formula limited
its applicability to simple standard boxes. Moreover, Garbowski et al. [1,2,11] examined
this approach for more sophisticated cases and modified the McKee’s formula. One cannot
forget that the compression strength of corrugated paperboard boxes [12] depends on many
factors, such as moisture content of the box [13,14], the presence of openings, ventilation
holes and perforations [1,2,15], storage time, stacking conditions [16] and numerous others.

An alternative option to compute the strength of the boxes is to implement, the
well-known in engineering, finite element method (FEM). It has been involved in a lot
of research, including the problems of numerical analysis with regard to the transverse
shear stiffness of corrugated cardboards [17–21] as well as buckling and post-buckling
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phenomena [22]. The method that efficiently allows one to simplify the examined models
is homogenization [23–27]. The result of this procedure is one single layer described by
the effective properties of the composite, rather than building the layers made out of
different materials. The advantage of this approach to the problem is a significant saving of
calculation time while maintaining the appropriate accuracy of the results. The approach
based on strain energy, applicable to sandwich panels in the issue of homogenization, was
presented by Hohe [28]. For this purpose, a representative element of the heterogeneous
and homogenized elements was proposed. Another method, using a periodic homoge-
nization technique considered by Buannic et al. [29], allows not only for an equivalent
membrane and the pure bending characteristics of period plates but also, in a modified
version, includes the transfer of shear effect in the analysis. The FEM was applied by
Biancolini [30] for the examination of a micromechanical part of the considered plate. In
the aftermath of application, the energy equivalence between the model and the equivalent
plate as well as the stiffness properties of the sandwich plate were obtained. In turn, Abbès
and Guo [31] analyzed the plate, which was decomposed into two beams in the directions
of the plate, which allowed them to find the torsion rigidity of the orthotropic sandwich
plates. The method of treating the quasi-static equilibrium of a material subjected to defor-
mation with hardening was proposed in [32]. Therefore, the experimental data obtained
in the dynamic case of deformation could be compared with the data calculated for the
quasi-static case. The laboratory tests, properly chosen and scheduled, were performed
right on the composite. Layered elements, on which effective parameters can be measured
directly, are an alternative method for homogenization. This very approach is proposed in
the present research.

An operation during which fold and perforation lines are introduced is defined
as creasing. One cannot neglect its impact on the load-bearing capacity of corrugated
paperboard. Undeniably, those lines reduce the mechanical strength of the manufactured
corrugated paperboard boxes, hence the results of extensive research can be found in
the literature. The comparison between the experimental and FEM numerical results,
performed in order to examine the creasing influence on the local strength of corrugated
paperboard, was discussed by Thakkar et al. [33]. The impact of creasing and subsequent
folding on the mechanical properties of laminated paperboard has been picked up by
Beex and Peerlings [34], who performed physical as well as numerical experiments, whilst
Giampieri et al. [35], to acquire the mechanical response of creased paperboard after
folding, used a constitutive model. Domaneschi et al. [36] and Awais et al. [37] proposed
an essential (from a practical point of view) solution for the packaging industry, basing
it on the FEM simulations of paperboard creasing. Experimental, as well as numerical,
studies on the influence of the creasing process during press forming on the paperboard
mechanical properties were conducted by Leminen et al. [38].

The particular top and bottom flaps design, which is directly related to the flap creases,
and their influence on the strength of corrugated cardboard boxes is investigated in this
study. An updated analytical–numerical approach is used to predict the strength of the
packaging with various flap offsets. Experimental results pointed out a significant decrease
in the static load-bearing capacity of packaging in the case of shifted flap creases. The
simulation model, proposed in the previous works of the authors [1,11], has been modified
and updated to take this effect into account as well. The results obtained during the
analysis of the numerical model proposed in the paper are in adequate agreement with the
experimental data. This approach by which the prediction of the strength of boxes with
offset flaps is analyzed is, to our knowledge, very pioneering and constitutes an innovative
contribution to the development of the field related to the prediction of the load capacity of
corrugated cardboard packaging.



Materials 2021, 14, 5181 4 of 18

2. Materials and Methods
2.1. Corrugated Board Packaging with Shifted Flaps

In previous works, the authors analyzed packages with perforations [1] and open-
ings [2]. Here, the focus is on packages with offset flaps. Such packaging is becoming
standard in retail-ready packaging that is also used for shipping. The shifting of the
crease line (see Figure 1) makes the flaps more adjustable after closing. Unfortunately, the
load-bearing capacity of packaging with shifted flaps significantly diminishes.
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The drop in box strength results from a certain sequence of loading, in which the
edges of the two shifted (elongated) walls of the package are loaded first, while the other
two are only loaded after buckling and/or crushing of the first two (see Figure 2).
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loaded in the second step.

In order to derive a simplified calculation algorithm for estimating the strength of
boxes with offset flaps, a series of tests was first performed in the laboratory for various
boxes made of different corrugated cardboard. All studies were carried out on the BCT
press [39] (see Figure 3). In order to be able to perform computer predictions of the
packaging load capacity, it is required in the first step to identify the material parameters
of the corrugated board, then to select the appropriate material model and finally to build
a numerical or analytical model that takes into account the geometry of the analyzed box.
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The following sections describe the laboratory testing of corrugated board, the con-
stitutive modeling of corrugated cardboard, a numerical simulation model and a simple
analytical algorithm for estimating the load capacity of corrugated cardboard packaging.

2.2. Laboratory Testing of Corrugated Board

Laboratory tests of the corrugated cardboard were performed to determine its stiffness
and strength. The four most commonly used tests are: edge crush test, shear stiffness
testing, torsional stiffness test and 4-point bending test. The edge crush test (ECT) mea-
sures the compressive strength of a corrugated board sample. This test is performed for
relatively stocky specimens, so that the failure mechanism is the crushing of the sample,
not the loss of stability. The ECT value is often used to determine the load capacity of
the corrugated cardboard package in analytical [6], analytical–numerical [1,2,11] or purely
numerical [40,41] approaches.

The shear stiffness test (SST) is used to measure the shear stiffness of a sample by
applying two equal forces at opposite corners. The measurement of displacements and
reaction forces on the supports enables the required stiffness to be calculated. The SST is
characterized by a high sensitivity to crushing the sample, resulting in processes such as
die-cutting and laminating. The torsional stiffness test (TST) consists of twisting the sample
by 10 degrees in both directions and is performed to determine the torsional stiffness. Only
the linear part of the bending moment/angle of rotation diagram is being considered for
this purpose. The obtained TST values are valid even for highly crushed, broken and
flaccid samples.

The bending stiffness test (BNT) is used to determine the bending stiffness in the
4-point bending test. The static scheme of the tested sample allows a constant bending
moment and a shear force equal to zero between the internal supports to be obtained, which
provides more accurate measurement of the bending stiffness value. On the other hand,
the presence of a shear force between internal and external supports makes it possible to
take into account the effect of the shear stiffness as well.

2.3. Corrugated Board: Material Model and Constitutive Parameters

Since paperboard is an orthotropic material, many material parameters are needed for
its correct mathematical description. Therefore, more laboratory tests should be carried
out. In papermaking laboratories one can determine visual, functional and mechanical
properties of paperboard or corrugated board. The most popular mechanical tests include,
for example: (a) short span compression test (SCT) of paperboard; (b) tensile test of
paperboard; (c) resistance to bursting of paperboard or corrugated board; (d) edge crush
test (ECT) of corrugated board; (e) flat crush test (FCT) of single walled corrugated board;
(f) corrugated board bending stiffness (4-point bending test).

Some of these tests can be directly used for linear elastic material model calibration,
namely the plane strain Young’s modulus in two perpendicular directions, Kirchhoff’s
modulus and Poisson’s ratio. The modulus of elasticity (i.e., Young’s modulus) is a quantity
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well known to designers and engineers, but less common in paper specifications in the
cardboard packaging industry. Traditionally, the stiffness modulus can be determined
while performing a uniaxial tensile test of a sample. As paperboard is an orthotropic
material, more tests are required to determine all elastic parameters (see Figure 4).
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Determining the elastic parameters is an important step in the box load-bearing
capacity estimation procedure, thus the brief introduction to some basic definitions, the
constitutive description of the paperboard and the method of calibrating material constants
will be presented in the subsequent sections. For orthotropic materials in a plane stress
state, the relationship between elastic strains and stresses can be written as: ε11

ε22
2ε12

 =

 1/E1 −ν21/E2 0
−ν12/E1 1/E2 0

0 0 1/G12

 σ11
σ22
σ12

, (1)

where E1 is Young’s modulus in the Machine Direction (MD); E2 is Young’s modulus in
the Cross Direction (CD); G12 is Kirchhoff’s modulus and ν12, ν21 are Poisson’s coefficients.
Due to the symmetry of the material compliance/stiffness matrix, the relationship between
the Poisson’s coefficients is as follows:

ν12

E1
=

ν21

E2
. (2)

The Hill model [42] can be successfully employed to describe the behavior of the
paper in an inelastic phase. Implementation of the Hill model requires the definition
of the elastic domain described by the plastic yield function and the description of the
material hardening:

f (σ, κ) =
√

a1σ2
11 + a2σ2

22 − a12σ11σ22 + 3a3σ2
12 − σ0(κ) ≤ 0, (3)

where
√
∗ is an effective stress σe f f , which can be reduced to classical Huber-Mises criterion

for isotropic materials if a1 = a2 = a12 = a3 = 1; σ0(κ) is a yield stress function; κ is a
hardening parameter, usually related to effective plastic strains; σij are the stresses in
main orthotropic directions; ai and a12 are called anisotropic parameters, which can be
determined from simple tensile tests in the main orthotropic directions:

a1 =
σ2

0
σ2

10
, a2 =

σ2
0

σ2
20

, a3 =
σ2

0
3σ2

120
, (4)

where: σ0 is the initial yield stress in the reference direction; σ10 is the yield stress in
first direction (e.g., MD); σ20 is the yield stress in second direction; σ120 is the yield stress
in shearing.
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The remaining parameter a12 can be determined from the equation:

a12 = a1 + a2 + 3a3 − 4a45, (5)

where a45 is the anisotropic parameter determined from a tensile test in an angled direction
of 45 deg. As for most materials, only the values σ10 , σ20 and σ120 are known, in practical
applications for the coefficient a12 usually a simplified relationship is assumed, e.g.,:

a12 =
σ2

0
σ10σ20

. (6)

It is a known fact that paperboard behaves differently under tension and compres-
sion. Therefore, the chosen plasticity criterion (which is symmetric in case of tension and
compression) is not appropriate for this type of material. However, for simple strength
calculations with a stress state dominated by compression, this model is a sufficient ap-
proximation. For the correct analysis of the structure in the complex stress state, one of the
more sophisticated constitutive models should be used, e.g., [43–48].

2.4. Numerical Predictive Model

The numerical model of the box was built in the Abaqus Unified FEA software (2020,
Dassault Systèmes Simulia Corp., Providence, RI, USA.) [49]. Two types of models had
to be created: (i) the non-offset packaging and (ii) the package with flaps offset. In order
to simplify the computations and save the computing time, only 1/8 part of the box was
modeled instead of the whole packaging (see Figure 5). The material used in the model
was linear elastic orthotropic model with Hill plasticity.
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Figure 5. Scheme of the 1/8 part of the package.

To obtain the appropriate behavior of the numerical model, symmetry boundary
conditions were defined on each edge (see Figure 6). For the packaging model without
offset, only one computation step was defined, in which the displacement was applied
on both edges. In the case of the package with offset flaps, in the first step only the offset
edge was loaded and in the second step the load was then applied to the non-offset edge.
The 4-node quadrilaterals shell elements with full integration, named S4, were used for all
computations. For different dimensions of packaging, different values of mesh size were
assumed. For example, for the package dimensions 500 × 500 × 500 mm the approximate
global size of the element was 12 mm, which ultimately gave 882 elements, 946 nodes and
5676 degrees of freedom. To add the initial deformations (resulting from imperfections) of
the box vertical walls, a buckling analysis was performed before the main calculations. The
first buckling mode of the model found in this way was later introduced in the next step in
the form of scaled imperfections.
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2.5. Analytical Predictive Model

The simplified procedure for estimating the compressive strength of a corrugated
cardboard box with offset flaps proposed here is based on an analytical model. The
algorithm exploits the basic constitutive parameters of a single box wall, namely: ECTCD—
compressive strength in CD, ECD = E2—compressive stiffness of corrugated boards in CD
and EMD = E1—compressive stiffness of corrugated boards in MD. Since in some cases the
instability of a single wall may occur before plasticization, it is also necessary to determine
the critical load for an orthotropic rectangular plate, e.g., from the formula [1,2,11]:

Pi
cr =

π2

Bi
2

ti
3

12

√
Ei

CDEi
MD

(
mBi
H

+
H

mBi

)2
, (7)

where Bi is the width of the i-th panel; ti is the i-th panel thickness; H is the box height; m
is the number of half-waves for which Pi

cr reaches the minimum.
The analysis of strength estimation of a box with shifted flaps, as already discussed

in the previous section, consists of two stages, in which the higher walls (i.e., the shifted
ones) are loaded first (see Figure 2a), while the lower walls are loaded only if preliminary
crushing and/or buckling of the first two walls occurs (see Figure 2b). Therefore, the overall
load capacity of the packaging is the sum of the load capacity of two pairs of opposite walls
of the box, namely:

BCT = αBCT1 + BCT2, (8)

where
BCT1 = 2kECTr

(
P1

cr

)1−r
γ1γ2B1 (9)

is the load capacity of the shifted walls, while

BCT2 = 2kECTr
(

P2
cr

)1−r
γ3γ4B2 (10)

is the load capacity of lower walls.
In Equations (9) and (10) k is a certain constant and r is an exponent, r ∈ (0, 1), and γi

are the reduction coefficients. B1 and B2 are base dimensions, which are shown in Figure 7.
The α coefficient reduces the value of the first term in Equation (8) due to the initial failure
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and/or buckling of the walls loaded in the first step (see Figure 8). This factor can be
calculated using the formula below:

α = 1−
uo f f − u0

umax − u0
, (11)

where uo f f is an offset of higher walls; umax = H is assumed to be equal to the height of the
box; u0 is the vertical deformation corresponding to the maximum load. The latter can be
calculated from Hooke’s law considering the stiffness in the CD direction, ECD; single box
wall height, H (see Figure 7); shifted wall width, B1; board thickness, t; the compressive
strength, BCT1 (see Figure 8). Thus, finally we obtain:

u0 =
BCT1

2tB1ECD
H. (12)
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The reduction factors γi are always less than one and depend on the ratio of the box
dimensions and the exponents ri. The γ1 factor in Equation (9) reads:

γ1 = min
[(

B1

H

)r1

, 1
]

, (13)

while γ2:

γ2 = min
[(

B1

B2

)r2

, 1
]

. (14)
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Similarly, the coefficient γ3 in Equation (10) is:

γ3 = min
[(

B2

H

)r3

, 1
]

, (15)

while γ4:

γ4 = min
[(

B2

B1

)r4

, 1
]

. (16)

All unknown factors in Equations (8)–(10), namely constant k and exponent r, and the
four exponents ri in Equations (13)–(16), can be found by calibration with experimental
data. The calibration procedure will be presented in the following section.

2.6. Calibration Procedure

The main goal of this study is to propose a reliable analytical model for the quick
estimation of the load capacity of offset packaging. Therefore, the calibration of the
coefficients in the analytical equations is particularly important. Unfortunately, the limited
number of laboratory results creates a risk that the analytical model will be valid only
for a small set. In order to extend the applicability of the proposed model, a calibration
procedure consisting of two stages was engaged: (i) in the first step, special attention was
paid to the correct mapping of experimental results into a numerical model; (ii) in the
second one, the already tuned numerical model was used to generate much larger sets of
cases, which were then utilized to identify the sought parameters in the analytical model.

In the first step, the only unknowns are the initial imperfections. Therefore, a very
simple strategy is used, in which the numerical model is calibrated with experimental data
by appropriate scaling of the initial deformations of the vertical box walls. In the second
step, the coefficients in Equations (9) and (10) are identified in the assumed order: first the
constant k as well as exponents r and r1, then r2 and r3. In both cases, simple techniques
were used to minimize the discrepancy between analytical model prediction and numerical
results with the use of the least squares method.

3. Results
3.1. Corrugated Board: Material Testing

In order to correctly determine the properties of the material, it was necessary to
examine samples of corrugated board in several typical laboratory tests. For this purpose,
a FEMat BSE device (FEMat Sp z o.o., Poznan, Poland) [50] was used. In total, seven
different types of corrugated cardboard with a grammage of 350 to 965 g/m2 were tested.
Since cardboard is a very heterogeneous material, at least 10 samples in each test were
examined for each grade in order to obtain statistically reliable results. In Table 1, the
sample results for the BC-780 grade are summarized. The first column represents a test
number, the second column shows the sample thickness and in the third to ninth columns
the results obtained from different tests in both orthotropy directions are demonstrated (all
test symbols are explained in the previous section).

Figure 9 demonstrates the force-displacement curves from all tests of the corrugated
cardboard. Since both shape of the curve and the calculated shear stiffness (SST) in the
machine and cross directions are almost identical, only the values in the MD are shown. In
Table 2, the mean values of the tests for all seven grades are presented. The first column
represents grades that were used in the packaging for which the box compression test was
carried out (details will be discussed in the next section). In the second to ninth columns,
the measured stiffnesses obtained from the BSE device are shown.
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Table 1. Test values for BC-780 corrugated cardboard grade.

Test THK ECT BNT-MD BNT-CD SST-MD SST-CD TST-MD TST-CD

1 6.49 10.77 10.79 10.47 2.96 3.05 3.10 1.79
2 6.50 10.66 10.55 9.66 3.02 2.77 3.05 1.74
3 6.49 10.93 10.53 9.20 2.90 2.99 3.08 1.79
4 6.53 11.28 10.31 10.11 2.80 2.86 3.26 1.71
5 6.53 11.15 10.29 11.24 2.95 2.91 3.20 1.70
6 6.52 11.41 11.13 11.94 2.95 2.77 3.31 1.92
7 6.52 11.85 11.06 10.92 2.95 2.77 3.29 1.85
8 6.55 10.82 11.11 11.03 2.96 2.70 3.29 1.90
9 6.53 11.44 10.42 9.05 3.10 2.90 3.45 1.88
10 6.55 11.44 10.74 10.43 3.12 2.87 3.35 1.88
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Figure 9. Force-displacement curves for BC-780 corrugated cardboard in various tests: (a) ECT; (b) BNT–MD; (c) BNT–
CD; (d) SST; (e) TST–MD; (f) TST–CD. 

  

Figure 9. Force-displacement curves for BC-780 corrugated cardboard in various tests: (a) ECT; (b) BNT–MD; (c) BNT–CD;
(d) SST; (e) TST–MD; (f) TST–CD.

Table 2. Test values for corrugated cardboard grades.

Grade THK ECT BNT-MD BNT-CD SST-MD SST-CD TST-MD TST-CD

E-350 1.49 4.68 0.36 0.80 0.19 0.24 0.18 0.18
E-380 1.59 5.41 0.49 1.16 0.26 0.31 0.23 0.23
B-400 2.80 5.50 1.50 2.94 0.55 0.57 0.60 0.38

EE-585 2.77 9.05 1.46 2.94 0.67 0.71 0.70 0.73
BC-780 6.52 11.18 10.69 10.41 2.97 2.86 3.24 1.82
EB-880 4.42 15.11 6.32 10.70 2.33 2.28 2.47 2.06
EB-965 4.55 13.69 5.68 11.39 2.24 2.26 2.42 1.89

3.2. Box Compression Test (BCT)

In the next step, the load capacity of the packaging was checked. For this purpose, the
FEMat BCT-20T20 compact press (FEMat Sp. Z o.o., Poznan, Poland) [38] was exploited
(see Figure 3a). A total number of 18 samples of various dimensions and materials were
prepared. The analysis was carried out for two types of packaging: without and with an
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offset. In Table 3, the results obtained with the box compression test are presented. In
the first column, corrugated cardboard grades are shown. The second, third and fourth
columns show the dimensions of the package (see Figure 7). For offset packaging, the edge
of the B1 dimension is the offset edge. The fifth column represents the value of the load
capacity of the package without offset. Columns six and seven are the BCT values for the
offset package: the sixth column is the value of the first extreme and the seventh column is
the value of the second extreme.

Table 3. Main dimensions and BCT values of various corrugated cardboard packaging.

Name
B1 B2 H BCT (N)

(mm) (mm) (mm)
Without
Offset

With
Offset 1

With
Offset 2

E-350-1 300 200 300 875 566 767
E-350-2 450 100 450 704 454 656
E-380 300 200 300 1003 663 1131

B-400-1 300 200 300 2048 1265 1556
B-400-2 450 100 450 1498 1104 1201
EE-585 300 200 300 2409 1452 1855
BC-780 300 200 200 4995 2989 3817
EB-880 300 200 300 5352 3404 3700
EB-965 300 200 200 4445 3124 3830

In Figure 10, the force-displacement diagrams for boxes with dimensions 300 × 200
× 200 mm, with and without offset, made of BC-780 and EB-965 corrugated cardboard
are shown.
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3.3. Prediction Results of the Numerical Model

Having the geometry of all the tested boxes and the material properties of the corru-
gated cardboards, it was possible to build numerical models and calibrate the only one
remaining component: the initial imperfections. These are especially important in the
geometrically nonlinear FE analysis. To introduce preliminary deformations into the model,
first a buckling analysis was carried out to find the first preferred buckling mode, which
was then introduced as a deformed shape of the load-bearing panels of the box.

The influence of the imperfection size on the load capacity of the box 300 × 200 × 200 mm
made of BC-780 is shown in Figure 11.
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After a successful calibration procedure, the results obtained with the numerical model
are summarized in Table 4, which also shows the differences between the calculated and
the measured values of the BCT.

Table 4. Comparison of measured and numerically determined BCT values for various corrugated
cardboard packaging.

Name

BCT (N)

Measured Values Numerical Values

First
Extreme

Second
Extreme

First
Extreme

Second
Extreme

E-350-1 566 767 520 778
E-350-2 454 656 448 648
E-380 663 1131 641 1132

B-400-1 1265 1556 1185 1540
B-400-2 1104 1201 1126 1117
EE-585 1452 1855 1468 1834
BC-780 2989 3817 2993 3690
EB-880 3404 3700 3222 3555
EB-965 3124 3830 3265 3653

3.4. Prediction Results of the Analytical Model

As already discussed, the main step was to calibrate the coefficients in the analytical
formulas for the load capacity estimation of corrugated board packaging. For this purpose,
synthetically generated results were utilized. Thanks to the use of numerical results, the
range of packaging dimensions was much wider, which resulted in a greater number of
analyzed cases and therefore made the calibration more reliable.

Table 5 shows all coefficients found in the minimization process used in Equations (9) and (10),
while in Figure 12 the discrepancy function in two-dimensional space [r3, r4] is shown.
It can be seen that in the selected range of parameters r3 and r4 there is only one local
minimum, which is also the global minimum (see Figure 12).

Table 5. Coefficients values.

k r r1 r2 r3 r4

0.55 0.50 1.00 − −
0.75 0.55 − − −1.00 0.50
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Figure 13 shows the estimation errors obtained from the analytical model in the
calibration procedure for all offset and non-offset boxes. Table 6 presents a comparison of
the results obtained from the tuned analytical model with the experimental results.
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Table 6. Comparison of measured and analytically determined BCT values for various corrugated
cardboard packaging.

Name

BCT (N)

Measured Values Analytical Values

First
Extreme

Second
Extreme

First
Extreme

Second
Extreme

E-350-1 566 767 553 752
E-350-2 454 656 471 657
E-380 663 1131 709 1135

B-400-1 1265 1556 1171 1642
B-400-2 1104 1201 1197 1323
EE-585 1452 1855 1516 1913
BC-780 2989 3817 2975 3764
EB-880 3404 3700 3360 3854
EB-965 3124 3830 3079 3877

Figures 14 and 15 show the distribution of the prediction error in the design space,
which are the main dimensions of the box (L, B, H). It can be seen that the greatest error
occurs with boxes that are short and long.
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4. Discussion

Since corrugated board is an orthotropic and non-homogeneous material, a large
number of tests were required for the correct characterization of its mechanical parameters.
This means that when testing both corrugated cardboard and boxes made of such material,
one can expect a large dispersion of test results. This is related to the heterogeneity of the
paper itself, as well as the corrugated cardboard, and the inaccuracy of the assemblies of
the tested packaging. Thus, the number of tests in the case of boxes should not be less than
five, as is the case with testing the corrugated cardboard samples.

Among the many mechanical tests of corrugated board available in the papermaking
laboratory, the most important define not only the static edge crush resistance but also the
flexural and torsional stiffness of the specimen. In this study, the BSE system [50], which
allows the examination of five physical parameters of cardboard (for three of them in both
directions of orthotropy), was exploited. Based on the results of all laboratory tests (see
Table 1 and Figure 9), homogenized parameters describing the elastic and plastic behavior
of the particular corrugated cardboard were obtained.

In order to diversify the set of BCT laboratory results, various corrugated cardboards
(a total of seven types) that are used for box production and nine different dimensions
of the packaging structure, in two variants (without and with offsets), were tested. The
results are presented in Table 3, where among the dimensions of the boxes and the symbols
of the corrugated board one can also find the BCT results for two cases: (a) without offsets
in column five and (b) with offsets in columns six and seven. The sixth column of Table 3
presents the force value for which two offset walls have been crushed. This is clearly seen
in Figure 10: the first peak in the blue result plots. Column seven of Table 3 shows the
maximum force value obtained in the BCT test.

Both predictive models take into account the behavior shown in Figure 10, which is
characteristic for the offset boxes. The numerical model is loaded sequentially, first on
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the walls with an offset and then when the displacement of the upper surface exceeds
the given offset, the two remaining walls are also loaded. As already mentioned, after
calibrating the material model and for the given geometry, the only unknown was the size
of the imperfections of the vertical walls. These parameters were in each case adjusted so
that the estimates agreed with the laboratory results. The effect of the applied imperfection
in a specific case (box EB-780) is shown in Figure 11.

This phenomenon is treated slightly differently in the analytical model, which is based
solely on the geometry of the box, its strength in CD and both stiffnesses in MD and CD. In
this case, the imperfections are embedded in the predictive model through the critical load
term in Equations (9) and (10), while the sequential crushing of the shifted and non-shifted
faces is captured by independently determining two values and scaling the maximum force
in the first peak by the factor α (see Equation (8)). This allows the degraded resistance of
walls with an offset and the resistance of walls without an offset to be taken into account
in the second peak. The tuning exponents found by the minimization procedure (shown
in Table 5) reached the optimal values of 0.5 or 1.0, while the constant k and exponent r
reached values of 0.75 and 0.55, respectively.

The use of data synthetically generated by the calibrated numerical model allowed a
much greater accuracy of the tuned parameters in the analytical model to be obtained. This
was mainly due to a larger range of results numerically generated for various geometric
dimensions of boxes that could not be physically produced and tested in the BCT press.
Figure 13 shows the distribution of the prediction error of the load capacity of various
corrugated board packages without and with an offset. The largest discrepancies occur
for packages with a relatively large proportion of dimensions (see Figures 14 and 15).
However, the average error in both cases does not exceed 7%. Overall, the proposed
predictive analytical model can capture the first peak in any experimentally tested sample
fairly correctly, and the error in most cases is less than 7%. The greatest differences can be
observed for samples B-400-1 and B-400-2, where the error was 8% and 9%, respectively.
Similar conclusions can be drawn when predicting a second peak. In most cases, the error
did not exceed 5%; only for the B-400-2 sample did it reach 9%.

In general, the application of analytical models existing in the literature, e.g., those
proposed in [4–10] or even more the recent models presented by Garbowski et al. [1,2,11],
does not allow one to predict the strength of boxes with shifted flaps. The reason is that
these models do not take into account the sequential crush of the package walls. Particular
attention should also be paid to modeling with purely numerical models, because special
techniques for sequential loading of the walls with appropriate imperfections should be
considered as well. The results presented in Tables 4 and 6 show the precision with which
both the numerical model and the proposed analytical model reflect the laboratory results
for selected constructions of corrugated cardboard boxes. The results obtained from both
models do not differ by more than 10% from the experimental results.

5. Conclusions

This article presents numerical and analytical models for predicting the strength of
boxes with displaced flaps. The obtained results are in accordance with the conducted
laboratory tests. In both models, the mechanical parameters of the corrugated board
obtained from the selected laboratory tests were implemented. Both models are based
on a sequential approach for the loading of the vertical walls of a box; the walls with an
offset are loaded first, then the walls without an offset. At the moment of loading the
walls without offset, the two walls loaded in the first step are already partially damaged.
Therefore, this type of packing is characterized by much lower load-bearing capacity than
packages with flaps without an offset. Thanks to the methodology presented in this paper
and utilization of such predictive tools, it is possible not only to design packaging more
consciously, but also to deliver and optimally use the material for their manufacturing, and
thus improve the sustainable economy of the production plant.
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