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Abstract: The corrugated board packaging industry is increasingly using advanced numerical tools 

to design and estimate the load capacity of its products. This is why numerical analyses are becom-

ing a common standard in this branch of manufacturing. Such trends cause either the use of ad-

vanced computational models that take into account the full 3D geometry of the flat and wavy layers 

of corrugated board, or the use of homogenization techniques to simplify the numerical model. The 

article presents theoretical considerations that extend the numerical homogenization technique al-

ready presented in our previous work. The proposed here homogenization procedure also takes 

into account the creasing and/or perforation of corrugated board (i.e., processes that undoubtedly 

weaken the stiffness and strength of the corrugated board locally). However, it is not always easy 

to estimate how exactly these processes affect the bending or torsional stiffness. What is known for 

sure is that the degradation of stiffness depends, among other things, on the type of cut, its shape, 

the depth of creasing as well as their position or direction in relation to the corrugation direction. 

The method proposed here can be successfully applied to model smeared degradation in a finite 

element or to define degraded interface stiffnesses on a crease line or a perforation line. 

Keywords: corrugated cardboard; numerical homogenization; strain energy equivalence; perfora-

tion; creasing; flexural stiffness; torsional stiffness 

 

1. Introduction 

Colorful boxes and packaging are designed to attract the customers’ attention and, 

as a consequence, to drive the sales of various goods ranging from bulky products, 

through food, children’s toys, cosmetics, and many others. A growing awareness of con-

cern for the natural environment has led many companies to opt for packaging that can 

be easily recycled or disposed of, biodegradable, and space-saving after manufacturing. 

A corrugated cardboard undoubtedly has all of these qualities. Moreover, it is easy to 

print on, for example, the brand name. Corrugated cardboard is easy to shape via creasing 

along the suitable lines and, furthermore, creating openings, ventilation holes, or perfora-

tions does not cause much difficulty. The latter is essential with regard to shelf-ready 

packaging (SRP) or retail-ready packaging (RRP) when the product, after transportation 

to the site, is placed on the shelves and after tearing off the flap along the appropriately 

designed perforation, is ready for sale. Thus, a lot of time is saved, which nowadays leads 

to significant profits for large companies. 

Of course, one cannot only focus on the aesthetic values because the packaging, in 

fact, plays a much more important role such as securing the goods during storage or safe 

transport to the destination place. The load-bearing capacity of the corrugated cardboard 
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boxes and the influence of humidity, openings and perforation arrangement, or the loca-

tion of flaps is under constant investigation. Therefore, scientific research has become an 

integral part of a distinct branch of industry (i.e., cardboard packages production). Man-

ufacturers of these packaging types strive for effective, economical, and easy-to-use solu-

tions, which results in the continuous, lasting over many years, development of research 

on cardboard strength while using various analytical, numerical, and experimental meth-

ods. 

Compressive, tensile, or bursting strength tests are routinely executed to assess the 

load-bearing capacity of corrugated cardboard boxes. The box compression test (BCT) and 

the edge crush test (ECT) are the best known. Inextricably related to the mechanical 

strength of the paperboard or corrugated cardboard boxes are two characteristic in-plane 

directions of orthotropy (i.e., perpendicular to the main axis of the fluting and parallel to 

the paperboard fiber alignment—machine direction (MD) as well as parallel to the flut-

ing—cross direction (CD)). 

Another option for estimating the compressive strength of the boxes is the applica-

tion of analytical formulae in which, in general, three groups of parameters such as paper, 

board, and box parameters are present [1]. Ring crush test (RCT), Concora liner test (CLT), 

liner type, weights of liner and fluting, corrugation ratio, and a constant related to fluting 

belong to the first group. Thickness, flexural stiffnesses in MD and CD, ECT, and moisture 

content are affiliated with the second group whereas dimensions and perimeter of the box, 

applied load ratio, stacking time, buckling ratio, and printed ratio are in the third one. 

Already in 1952, Kellicutt and Landt [2] proposed the calculations of box compressive 

strength while employing the formula with parameters introduced in the paper (RCT, 

flute constant) and box (perimeter, box constant). In 1956, Maltenfort [3] indicated the re-

lation between the critical force and paper parameters (CLT, type of liner) and cardboard 

box dimensions in the BCT. In the approach proposed by McKee, Gander, and Wachuta 

[4] in 1963, the parameters of the paperboard (ECT, flexural stiffnesses) and the box pe-

rimeter were applied. Even though this formula is commonly used in the packaging in-

dustry due to its simplicity, which leads to quick and easy solutions for practical imple-

mentations, it is applicable only to simple standard boxes. Therefore, scientists have been 

making attempts to extend the implementation of McKee’s analytical approach. Allerby 

et al. [5] modified the constants and exponents, whilst Schrampfer et al. [6] improved 

McKee’s method by expanding the range of cutting methods and equipment. Batelka et 

al. [7] augmented the relationship by introducing the dimensions of the box and Urbanik 

et al. [8] included the Poisson’s ratio. Further modification of the above-mentioned 

McKee’s formula for solving more complex problems has been proposed by Aviles et al. 

[9] and later, by Garbowski et al. [10–12]. 

Over recent decades, meshless and meshfree methods (e.g., the collocation method) 

have become popular numerical techniques for solving partial differential equations and 

have been beneficial while considering corrugated cardboard problems. Wang and Qian 

[13] proposed the meshfree stabilized collocation method (SCM) and introduced the re-

producing kernel function as the approximation. Wang et al. [14] employed the meshfree 

radial basis collocation method (RBCM), which utilizes infinitely continuous radial basis 

functions (RBFs), as the approximation for the static and dynamic eigenvalue analysis of 

the thin functionally graded shells (FGSs) with in-plane material inhomogeneity. The 

buckling analysis of thin FG plates, also with in-plane material inhomogeneity, while ap-

plying radial basis collocation method (RBCM) and Hermite radial basis function colloca-

tion method (HRBCM) was discussed by Chu et al. [15]. The main advantages of the 

above-mentioned approaches are high accuracy and exponential convergence. 

Unquestionably, many determinants affect the compression strength of the corru-

gated paperboard boxes [16] including the moisture content of the box [17,18], openings, 

ventilation holes and perforations [11,12,19], storage time and conditions [20], stacking 
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load [21], or a very significant one—creasing. As a result of such a process, fold and per-

foration lines are performed and through this, the mechanical strength of the manufac-

tured corrugated paperboard boxes is diminished. 

A very effective, commonly applied in engineering, technique to determine the 

strength of the boxes is the finite element method (FEM). Thakkar et al. [22] compared the 

experimental and FEM numerical results to investigate the creasing impact on the local 

strength of corrugated paperboard; Beex and Peerlings [23], in turn, conducted physical 

and numerical experiments to examine the influence of creasing and subsequent folding 

on the mechanical properties of the laminated paperboard. A constitutive model was im-

plemented by Giampieri et al. [24] in order to obtain the mechanical response of creased 

paperboard after folding. FEM simulations of paperboard creasing, which appeared to be 

significant from a practical standpoint, have been proposed by Domaneschi et al. [25] and 

Awais et al. [26]. Leminena et al. [27] performed experimental and numerical analyses to 

examine the influence of the creasing process during the press forming on the paperboard 

mechanical properties. FEM has also been involved in research raising the issue of numer-

ical analysis in relation to transverse shear stiffness of the corrugated cardboards [28–32] 

or buckling and post-buckling phenomena [33]. 

The examined models can be facilitated to one single layer described by the effective 

properties of the composite instead of building layers composed of different materials. 

Such a method, called homogenization, has been used extensively over the last years by 

Garbowski et al. [32,34–37]. A clear advantage of this technique is the significant saving 

in calculation time while preserving the precision of the results. Hohe [38] proposed a 

representative element of the heterogeneous and homogenized elements based on strain 

energy to analyze sandwich panels. A periodic homogenization method presented by Bu-

annic et al. [39] enabled them to obtain an equivalent membrane and pure bending char-

acteristics of period plates and, in a modified version, to incorporate the transfer shear 

effect in the analysis. Biancolini [40] engaged FEM to study a micromechanical part of the 

considered plate. Thanks to the energy equivalence between the model and the homoge-

nized plate, the stiffness properties of the sandwich plate were received. Decomposition 

of the plate into two beams in directions of the plate allowed Abbès and Guo [41] to define 

the torsion rigidity of the orthotropic sandwich plates. An interesting approach based on 

empirical observation can also be found in the recent work of Gallo et al. [21]. A multiple 

scales asymptotic homogenization approach was presented by Ramírez-Torres et al. [42] 

where the effective properties of hierarchical composites with periodic structure at differ-

ent length scales has been studied, whereas in [43], the authors used the asymptotic ho-

mogenization technique to the equations describing the dynamics of a heterogeneous ma-

terial with evolving micro-structure, obtaining a set of upscaled, effective equations. 

The following article, as the next one in the series, provides theoretical considerations 

that develop and extend the numerical homogenization technique already presented in 

the prior works of the authors. The proposed homogenization procedure also takes into 

consideration the creasing and/or perforation of corrugated board (i.e., processes that ev-

idently weaken the stiffness and strength of the corrugated board locally). However, it is 

not always easy to estimate how exactly these processes affect the bending or torsional 

stiffness. The fact is that the decrease in stiffness depends, among others, on the type of 

cut, its shape, and the depth of creasing as well as their position or direction in relation to 

the corrugation orientation. The method proposed here can be successfully implemented 

to model smeared degradation in a finite element or to define degraded interface stiff-

nesses on a crease line or a notch line.  
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2. Materials and Methods 

2.1. Corrugated Board—Material Definition 

Corrugated board, as a fibrous material, is characterized by strong orthotropy. The 

mechanical properties of its components (i.e., cardboard) depend on the direction of the 

fibers in the individual layers of the composite. Paper and paperboard are more than twice 

as stiff in the machine direction (MD) than in the cross direction (CD). This is related to 

the fibers which, due to the production process, arrange along the MD. In this direction, 

the material is more resistant to tearing and crushing, although it has lower ductility than 

in CD (see Figure 1). 

The linear elastic orthotropic material can be described by the following stress–strain 

relationships: 

[
 
 
 
 
𝜀11

𝜀22

2𝜀12

2𝜀13

2𝜀23]
 
 
 
 

=

[
 
 
 
 

1 𝐸1⁄ −𝜈21 𝐸2⁄ 0 0 0

−𝜈12 𝐸1⁄ 1 𝐸2⁄ 0 0 0

0 0 1 𝐺12⁄ 0 0

0 0 0 1 𝐺13⁄ 0

0 0 0 0 1 𝐺23⁄ ]
 
 
 
 

[
 
 
 
 
𝜎11

𝜎22

𝜎12

𝜎13

𝜎23]
 
 
 
 

 (1) 

where 𝐸1 is the Young’s modulus in the machine direction (MD); 𝐸2 is the Young’s mod-

ulus in the cross direction (CD); 𝐺12 is the Kirchhoff’s modulus, 𝜈12; 𝜈21 is the Poisson’s 

coefficients. Due to the symmetry of the material compliance/stiffness matrix, the relation-

ship between the Poisson’s coefficients is as follows: 

𝜈12

𝐸1

=
𝜈21

𝐸2

 (2) 

 

Figure 1. Paperboard mechanical behavior. The stress–strain relationships in different material di-

rections. 

The material orientation was always the same in all layers (see Figure 2). This is re-

lated to the corrugated board production process in which the paper (for the production 

of both flat and corrugated layers) is rolled on a corrugator machine from multi-tone bales. 
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Figure 2. Material orientation. 

The paperboard, as already mentioned, was modeled here using classical linear elas-

tic orthotropy (see Equation (1)). The material data were taken from the literature 

[40,44,45]. All material data are presented in Table 1 (i.e., 𝐸1, 𝐸2, 𝑣12, 𝐺12, 𝐺13 and 𝐺23, 

which represents Young’s moduli in both directions, Poisson’s ratio, in-plane shear mod-

ulus and two transverse shear moduli, respectively). 

Table 1. Material data of intact double wall corrugated cardboard used for modeling the paper lay-

ers according to orthotropic constitutive relation. 

Layers 
𝑬𝟏 𝑬𝟐 𝝂𝟏𝟐 𝑮𝟏𝟐 𝑮𝟏𝟑 𝑮𝟐𝟑 

(MPa) (MPa) (-) (MPa) (MPa) (MPa) 

liners 3326 1694 0.34 859 429.5 429.5 

fluting 2614 1532 0.32 724 362 362 

The thickness of all flat layers (liners) in both single- and double-walled corrugated 

boards was assumed to be 0.30 mm; for all corrugated layers (flutes) in both models, the 

thickness was also taken as 0.30 mm. 

2.2. Creases and Perforations—Numerical Study 

The main goal of this work was to numerically analyze many cases of perforation 

with possible creasing and its effect on the stiffness reduction of corrugated board. The 

variants include not only different types of perforation (e.g., 4/4—4 mm cut, 4 mm gap; 

2/6—2 mm cut, 6 mm gap; and 6/2—6 mm cut, 2 mm gap), but also different orientations 

of the cuts in the sample (from 0 to 90 deg. every 15 degrees). All cases are compiled in 

Table 2 and are shown in Figure 3. 

   
(a) (b) (c) 
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(d) (e) (f) 

Figure 3. Perforation types: (a) Type 2/6—model SW; (b) Type 4/4—model SW; (c) Type 6/2—model SW; (d) Type 2/6—

model DW; (e) Type 4/4—model DW; (f) Type 6/2—model DW. 

Two hypothetical corrugated boards were analyzed here, namely single-walled (SW) 

with 8 mm flute period, 4 mm height and double-walled (DW) with 4 mm flute period, 2 

mm flute height (for lower layer) and 8 mm flute period, 4 mm flute height (for higher 

layer). Figure 4 shows the visualizations of the geometry of both examples. 

  
(a) (b) 

Figure 4. Geometry of the sample: (a) single layer; (b) double layer. 

Table 2. Sample symbols. 

Perforation Type Model SW Model DW 

4 mm cut, 4 mm gap SW-44-Y 1-xx 2 DW-44-Y-xx 

2 mm cut, 6 mm gap SW-26-Y-xx DW-26-Y-xx 

6 mm cut, 2 mm gap SW-62-Y-xx DW-62-Y-xx 
1 Y means model type and can be: F-flute or C-cut.2 xx is the cut or crease orientation and can be: 

00, 15, 30, 45, 60, 75, or 90. 

Both the influence of the flute orientation and the cutting orientation on the decrease 

in the stiffness of the corrugated board were examined. In case C, the cutting orientation 

changed to 00, 15, 30, 45, 60, 75, 90 degrees (see Figure 5) while the flute orientation re-

mained constant. 

   
(a) (b) (c) 
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(d) (e) (f) 

Figure 5. Perforation orientation in sample SW-44-C: (a) rotation by 15 degrees; (b) rotation by 30 degrees; (c) rotation by 

45 degrees; (d) rotation by 60 degrees; (e) rotation by 75 degrees; (f) rotation by 90 degrees. 

In case F, the flute orientation were changed to 00, 15, 30, 45, 60, 75, 90 degrees (see 

Figures 6 and 7) while the cut orientation remained constant. All cases are summarized in 

Table 2. 

   
(a) (b) (c) 

  
(d) (e) 

Figure 6. Perforation orientation in sample SW-44-F: (a) rotation by 15 degrees; (b) rotation by 30 degrees; (c) rotation by 

45 degrees; (d) rotation by 60 degrees; (e) rotation by 75 degrees. 

Both single-walled and double-walled models with perforations of 4/4 mm, 2/6 mm, 

and 6/2 mm in the variant 00 deg. of cut and flute rotation were crushed by 10, 20, and 

30%. This consideration results from the observation of the serial production of packaging 

in which crushing is an element built into the entire cutting and perforation process. The 

additional crushing during cutting is the result of using rubber in the area of perforation 

knives that additionally crush the cross-section. The crushed geometry of both kinds of 

samples is shown in Figure 8. 
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(a) (b) (c) 

  
(d) (e) 

Figure 7. Perforation orientation in sample DW-44-F: (a) rotation by 15 degrees; (b) rotation by 30 degrees; (c) rotation by 

45 degrees; (d) rotation by 60 degrees; (e) rotation by 75 degrees. 

All crushed samples were marked with an additional symbol R-xx, where xx means 

the amount of crush (i.e., 10, 20, or 30). Therefore, for example, a single-walled specimen 

with a cut/flute rotated by 0 degrees with a cut version of 44 and crushed by 10% has the 

symbol SW-44-C-00-R-10. 

   
(a) (b) (c) 

   

(d) (e) (f) 

Figure 8. Crushed samples: (a−c) Single-walled sample crushed by 10%, 20%, and 30%, respectively; (d−f) Double-walled 

sample crushed by 10%, 20%, and 30%, respectively. 

Additionally, what was verified during this research was the influence of the position 

of the cut in the corrugated boards’ cross-section along the wave on the stiffness reduction. 

For this purpose, four additional representative volumetric element (RVE) models were 

created in two variants of the SW and DW samples, in which the flute was shifted by 1/16 

of the period (P) from 1/16 P to 4/16 P (see Figure 9). 
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(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 9. Cross section of the corrugated board along the wave: (a) the reference SW sample—no offset; (b) SW sample—

offset equal to 1/16 P; (c) SW sample—offset equal to 2/16 P; (d) SW sample—offset equal to 3/16 P; (e) SW sample—offset 

equal to 4/16 P; (f) the reference DW sample—no offset; (g) DW sample—offset equal to 1/16 P; (h) DW sample—offset 

equal to 2/16 P; (i) DW sample—offset equal to 3/16 P; (j) DW sample—offset equal to 4/16 P. 

2.3. Homogenization Technique 

In order to determine the effect of cuts on the stiffness of the corrugated board, the 

numerical homogenization method was used here. This method, originally proposed by 

Biancolini [40] and later extended by Garbowski and Gajewski [32], is based on the elastic 

energy equivalence between the simplified shell model and the full RVE of corrugated 

cardboard. The RVE is a finite element (FE) representation of a small, periodic section of 

the full 3D corrugated board structure. The complete derivations of the constitutive model 

can be found in [32]. In the present study, only the basic assumptions are presented below. 

The displacement based on finite element formulation for a linear analysis can be 

represented by an equation: 

𝐊𝑒  𝐮𝑒 = 𝐅𝑒 , (3) 

where 𝐊𝑒 is a statically condensed global stiffness matrix of the RVE; 𝐮𝑒 is a displace-

ment vector of external nodes; and 𝐅𝑒 is a vector of the nodal forces applied to external 

nodes. In Figure 10, the FE mesh and mesh nodes are shown. 

  

(a) (b) 

Figure 10. RVE—external (in red color) and internal nodes and finite elements: (a) SW model; (b) 

DW model. 

Static condensation relies on the removal of unknown degrees of freedom (DOF) and 

then the formulation of the stiffness matrix for a smaller number of degrees of freedom, 

called the primary unknown or principal DOF. In the analyzed cases, the eliminated de-

grees of freedom is the internal RVE nodes and the external nodes are the primary un-

knowns. The statically condensed FE stiffness matrix is computed from the equation: 
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𝐊𝑒 = 𝐊𝑒𝑒 − 𝐊𝑒𝑖  𝐊𝑖𝑖
−1𝐊𝑖𝑒 , (4) 

where the stiffness matrix contains four subarrays related to internal (subscript 𝑖) and 

external (subscript 𝑒) nodes: 

[
𝐊𝑒𝑒 𝐊𝑒𝑖

𝐊𝑖𝑒 𝐊𝑖𝑖
] [

𝐮𝑒

𝐮𝑖  
] = [

𝐅𝑒

𝟎
]. (5) 

Static condensation reduces the total elastic strain energy to the work of external 

forces on the corresponding displacements. The total elastic strain energy can be calcu-

lated from the equation: 

𝐸 =
1

2
𝐮𝑒

𝑇 𝐅𝑒 . (6) 

The balance of the total energy for the full 3D shell model and the simplified shell 

model is ensured by an appropriate definition of displacements in the external RVE nodes 

and by enabling the membrane and bending behavior. More details can be found in Gar-

bowski and Gajewski [32]. The generalized displacements are related to the generalized 

strains on the RVE edge surfaces, which can be represented by the relationship: 

𝐮𝑖 = 𝐇𝑖  𝛜𝑖 , (7) 

where for a single node (𝑥𝑖 = 𝑥 , 𝑦𝑖 = 𝑦 , 𝑧𝑖 = 𝑧) the 𝐇𝑖  matrix adopted for RVE shell 

model can be determined: 

[
 
 
 
 
𝑢𝑥

𝑢𝑦

𝑢𝑧

𝜃𝑥

𝜃𝑦]
 
 
 
 

𝑖

=

[
 
 
 
 
𝑥 0 𝑦 2⁄ 𝑥𝑧 0 𝑦𝑧 2⁄ 𝑧 2⁄ 0

0 𝑦 𝑥 2⁄ 0 𝑦𝑧 𝑥𝑧 2⁄ 0 𝑧 2⁄

0 0 0 −𝑥2 2⁄ −𝑦2 2⁄ −𝑥𝑦 2⁄ 𝑥 2⁄ 𝑦 2⁄

0 0 0 0 −𝑦 − 𝑥 2⁄ 0 0

0 0 0 𝑥 0 𝑦 2⁄ 0 0 ]
 
 
 
 

𝑖

[
 
 
 
 
 
 
 
𝜀𝑥

𝜀𝑦

𝛾𝑥𝑦

𝜅𝑥

𝜅𝑦

𝜅𝑥𝑦

𝛾𝑥𝑧

𝛾𝑦𝑧 ]
 
 
 
 
 
 
 

𝑖

 (8) 

While using the definition of the elastic strain energy for a discrete model: 

𝐸 =
1

2
𝐮𝑒

𝑇 𝐊 𝐮𝑒 =
1

2
𝛜𝑒
𝑇 𝐇𝑒

𝑇 𝐊 𝐇𝑒  𝛜𝑒  (9) 

and considering a finite element as subjected to bending, tension, and transverse shear, 

the elastic internal energy is expressed by: 

𝐸 =
1

2
𝛜𝑒
𝑇  𝐇k 𝛜𝑒{𝑎𝑟𝑒𝑎}. (10) 

For a homogenized composite, the stiffness matrix can be easily determined as: 

𝐇𝑘 =
𝐇𝑒

𝑇 𝐊 𝐇𝑒

𝑎𝑟𝑒𝑎
. (11) 

The presented homogenization method is based on replacing the full 3D shell model 

with a simplified shell model and computing the effective stiffness of the RVE. Such a 

procedure significantly accelerates the computations and maintains a very high accuracy 

of the results. 

The matrix 𝐇𝑘 is formed by the matrices A, B, D, and R as follows: 

𝐇𝑘 = [

𝐀3×3 𝐁3×3

𝐁3×3 𝐃3×3

𝐑2×2

] (12) 

where A represents extensional and shear stiffnesses; B represents extension-bending cou-

pling stiffnesses; and D represents bending and torsional stiffnesses, while R represents 

transverse shear stiffness. 
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In general, the stiffness matrix 𝐀 is independent of the position of a neutral axis. For 

the most symmetrical cross sections, all elements of stiffness matrix 𝐁 are equal to zero. 

However, for unsymmetrical sections (i.e., double-walled corrugated board samples) ma-

trix 𝐁 is a non-zero, which indicates that there is a coupling between bending/twisting 

curvatures and extension/shear loads. Traditionally, these couplings have been sup-

pressed for most applications by choosing the position of the neutral axis that minimizes 

the values of 𝐁. Alternatively, uncoupled matrix 𝐃 can be computed from the formula: 

𝐃 = 𝐃0 − 𝐁𝐀−1𝐁, (13) 

where 𝐃0 represents the original (coupled) bending and torsional stiffnesses. 

Within all analyses, the 3-node triangular general-purpose shell elements, named S3, 

were used for the computations. In every examined case, approximate global size equal 

to 0.5 mm was assumed. Due to the analysis of different orientations of flutings or cuts in 

the sample, the number of elements changed. For example, in the case of the SW-44-C-00 

sample—2002 elements, 1099 nodes, and 6594 degrees of freedom were obtained, and for 

the DW-44-C-00 sample—3972 elements, 2074 nodes, and 12,444 degrees of freedom were 

obtained. 

3. Results 

3.1. Validation of the Proposed Method 

The proposed numerical method was first verified by direct comparison of the ob-

tained results with the existing solutions from the literature. One example concerns an 

assembled sandwich structure consisting of a corrugated tooth-shaped core enclosed be-

tween two sheets. A reference solution is available from Buannic et al. [39]. According to 

the notation used in the literature, the T2 panel was tested here. The FE models used in 

this comparison for the T2 sandwich consists of 3-node and 4-node shell elements and are 

shown in Figure 11. Error estimation was performed and the maximum deviation was less 

than 2.5%. 

   

(a) (b) (c) 

Figure 11. Representative shell elements of saw tooth geometry with quadrilateral mesh (single pe-

riod): (a) model with a fine 4-node mesh; (b) model with a coarse 3-node mesh; (c) model geometry. 

On the basis of the above validation (see Table 3) carried out on two numerical mod-

els: (a) model with a fine mesh (see Figure 11a) and (b) model with a coarse mesh (see 

Figure 11b), it was found that the solution does not depend on the element type and on 

the size of the finite element. It is important, however, to correctly represent any curva-

tures, therefore, in the case of sinus-like fluting, at least 16 segments are required to obtain 

correct results [32]. 
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Table 3. The stiffnesses of representative shell element computed for a different approach of mod-

eling confronted with data from [39] for saw tooth geometry. 

Stiffness Ref. [39] Corse Model Fine Model 

𝐴11, (N/mm) 1.108 106 1.118 106 1.118 106 

𝐴22, (N/mm) 1.358 106 1.380 106 1.378 106 

𝐴12, (N/mm) 3.324 105 3.449 105 3.448 105 

𝐴33, (N/mm) 4.168 105 4.115 105 4.115 105 

𝐷11, (N ⋅ mm) 9.195 108 9.211 108 9.210 108 

𝐷22, (N ⋅ mm) 9.822 108 9.926 108 9.925 108 

𝐷12, (N ⋅ mm) 2.758 108 2.777 108 2.777 108 

𝐷33, (N ⋅ mm) 3.220 108 3.269 108 3.268 108 

𝐴44,(N/mm) - 5.194 104 5.184 104 

𝐴55, (N/mm) - 7.408 104 7.376 104 

3.2. Detailed Results 

This section presents all the results of numerical tests for both single-walled (SW) and 

double-walled (DW) corrugated board samples. First, Tables 4 and 5 show an example of 

the 𝐀𝑘 matrix, calculated while using the SW and DW models, respectively (both unper-

forated). 

Due to the volume limitations of the data that can be presented in all the following 

tables, only the values from the main diagonals of the 𝐀𝑘 matrix are shown. This simpli-

fication does not introduce an error in the analyses of the results, mainly because the com-

ponents (∗)12 are related to the elements (∗)11 and (∗)22 in each matrix. The 𝐁 matrix 

was also disregarded. However, it has been accounted for using Equation (13) in the 𝐃 

matrix, which is presented in all tables below. 

Since the DW model is asymmetric, all matrices A, B, D, and R are non-zero; in par-

ticular, matrix B (see Table 5), which combines the bending effects with the membrane 

stiffness of the plate. 

Table 4. Constitutive stiffness matrix 𝐀𝑘 for the SW model without perforation. 

  A & B B & D R 

  1 2 3 1 2 3 4 5 

A
 &

 B
 1 2184.4 388.92 0 0 0 0   

2 388.92 1756.9 0 0 0 0   

3 0 0 667.81 0 0 0   

B
 &

 D
 1 0 0 0 8628.2 1506.5 0   

2 0 0 0 1506.5 5469.3 0   

3 0 0 0 0 0 2300.2   

R
 4       105.08 0 

5       0 130.91 

Table 5. Constitutive stiffness matrix 𝐀𝑘 for the DW model without perforation. 

  A & B B & D R 

  1 2 3 1 2 3 4 5 

A
 &

 B
 1 3313.8 593.33 0 1117.1 195.90 0   

2 593.33 2967.5 0 196.36 1200.6 0   

3 0 0 1077.8 0 0 409.89   

B
 &

 D
 1 1117.1 196.36 0 20 619 3620.8 0   

2 195.90 1200.6 0 3620.8 15 042 0   

3 0 0.0 409.89 0 0 5934.5   

R
 4       233.13 0 

5       0 242.28 
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Table 6 shows the selected stiffnesses of all SW models with no perforation and flut-

ing, rotated by an angle of 0 to 90 every 15 degrees. It is worth noting that in the case of 

models with rotated fluting by 90 degrees SW-0-F-90 and with non-rotating fluting SW-0-

F-0, the stiffness values (∗)11 and (∗)22 were swapped (the same holds for (∗)44 and 
(∗)55). 

Table 6. Selected stiffnesses in SW samples with no perforation and with different flute orientations. 

 SW-0-F-00 SW-0-F-15 SW-0-F-30 SW-0-F-45 SW-0-F-60 SW-0-F-75 SW-0-F-90 

𝐴11 (MPa mm) 2184.4 2127.2 1990.3 1854.2 1774.2 1751.5 1756.9 

𝐴22 (MPa mm) 1756.9 1751.5 1774.2 1854.2 1990.3 2127.2 2184.4 

𝐴33 (MPa mm) 667.81 699.26 760.50 792.80 760.50 699.30 667.80 

𝐷11 (MPa mm3) 8628.2 8313.5 7480.9 6521.5 5897.3 5575.8 5469.3 

𝐷22 (MPa mm3) 5469.3 5575.8 5897.3 6520.4 7480.9 8313.5 8628.2 

𝐷33 (MPa mm3) 2300.2 2425.2 2650.1 2755.4 2650.1 2425.2 2300.2 

𝑅44 (MPa mm) 105.08 108.15 119.80 132.90 127.20 126.20 130.90 

𝑅55 (MPa mm) 130.91 126.16 127.20 132.80 119.80 108.10 105.10 

Table 7 shows the selected stiffnesses of all DW models with no perforation and flut-

ing rotated by an angle of 0 to 90 every 15 degrees (see Figure 7). For the DW-0-F-45 and 

SW-0F-45 samples, the same values were obtained for all (∗)11 and (∗)22 as well as (∗)44 

and (∗)55, which was expected. This is, of course, due to the symmetry in both the geo-

metrical setup and the material orientation. 

Table 7. Selected stiffnesses in DW samples with no perforation and with different flute orientations. 

 DW-0-F-00 DW-0-F-15 DW-0-F-30 DW-0-F-45 DW-0-F-60 DW-0-F-75 DW-0-F-90 

𝐴11 (MPa mm) 3313.8 3250.6 3090.4 2955.2 2912.0 2939.7 2967.5 

𝐴22 (MPa mm) 2967.5 2939.7 2912.0 2955.3 3090.4 3250.6 3313.8 

𝐴33 (MPa mm) 1077.8 1127.5 1225.3 1275.9 1225.3 1127.5 1077.8 

𝐷11 (MPa mm3) 20,242 19,610 17,980 16,221 15,123 14,662 14,556 

𝐷22 (MPa mm3) 14,556 14,662 15,123 16,220 17,980 19,610 20,242 

𝐷33 (MPa mm3) 5778.6 6071.8 6634.3 6910.6 6634.3 6071.8 5778.6 

𝑅44 (MPa mm) 233.13 240.21 246.71 257.56 247.51 242.88 242.28 

𝑅55 (MPa mm) 242.28 242.88 247.51 257.43 246.71 240.21 233.13 

Figure 12 shows the stiffness reduction of thee perforated models (both SW and DW) 

depending on the perforation rotation angle. The normalization term in each case is the 

𝐀𝑘 matrix of the corresponding non-perforated sample (i.e., all stiffnesses in the perfo-

rated SW models are divided by the corresponding stiffnesses in nonperforated SW 

model). 

Tables 8 and 9 summarize the chosen values of stiffness for a selected case of SW 

sample with fluting rotated by 15 degrees, for four cases of perforation: (i) no perforation; 

(ii) 2/6 mm (i.e., the normalized cut is 25%); (iii) 4/4 mm (i.e., the normalized cut is 50%); 

and (iv) 6/2 mm (i.e., the normalized cut is 75%). 



Materials 2021, 14, 3786 14 of 21 
 

 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 12. Stiffness degradation in sample: (a) SW-26; (b) SW-44; (c) SW-62; (d) DW-26; (e) DW-44; (f) DW-62. 

Table 8. The selected stiffnesses in SW models for different perforations and flute rotated by 15 

degrees. 

Stiffness SW-0-F-15 SW-26-F-15 SW-44-F-15 SW-62-F-15 

𝐴11 (MPa mm) 2127.2 2116.1 2082.1 2052.3 

𝐴22 (MPa mm) 1751.6 1609.1 1267.7 885.12 

𝐴33 (MPa mm) 699.26 681.92 608.30 524.18 

𝐷11 (MPa mm3) 8313.4 8276.1 8166.4 8048.5 

𝐷22 (MPa mm3) 5575.8 5290.9 4291.8 2877.2 

𝐷33 (MPa mm3) 2425.2 2384.5 2216.7 1968.9 

𝑅44 (MPa mm) 108.15 107.68 106.48 106.77 

𝑅55 (MPa mm) 126.16 120.04 94.100 83.465 

Table 9. Stiffness reduction for both SW and DW samples with flute rotated by 15 degrees for three cases of perforation. 

Stiffness  

Reduction 

SW-26-F-15 

(%) 

SW-44-F-15 

(%) 

SW-62-F-15 

(%) 

DW-26-F-15 

(%) 

DW-44-F-15 

(%) 

DW-62-F-15 

(%) 

1−𝐴11/𝐴11
∗  0.523 2.121 3.519 0.508 1.903 3.364 

1−𝐴22/𝐴22
∗  8.133 27.66 49.46 7.852 27.77 50.98 

1−𝐴33/𝐴33
∗  2.480 13.01 25.04 2.735 12.66 24.50 

1−𝐷11/𝐷11
∗  0.449 1.769 3.187 0.467 1.786 3.247 

1−𝐷22/𝐷22
∗  5.110 23.03 48.40 6.377 25.41 49.18 

1−𝐷33/𝐷33
∗  1.677 8.598 18.81 2.171 10.25 20.88 

1−𝑅44/𝑅44
∗  0.435 1.545 1.273 −0.349 1.032 1.177 

1−𝑅55/𝑅55
∗  4.851 25.41 33.84 4.060 18.48 30.95 
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* denotes the reference value of non-perforated specimen (i.e., SW-0-F-15). 

Figure 13 shows the selected values of the stiffness reduction of the SW samples with 

the flute rotated by 15, 30, 45, 60, and 75 degrees. All stiffnesses were normalized by the 

𝐀𝑘 matrix of the non-perforated sample with the appropriate fluting orientation (see Fig-

ure 6). Figure 14 presents the selected values of the stiffness reduction of the DW samples 

with the flute rotated by 15, 30, 45, 60, and 75 degrees. All stiffnesses were normalized by 

the 𝐀𝑘 matrix of the non-perforated sample with the appropriate fluting orientation (see 

Figure 7). 

   
(a) (b) (c) 

  
(d) (e) 

Figure 13. Stiffness degradation in sample SW: (a) F-15; (b) F-30; (c) F-45; (d) F-60; (e) F-75. Three types of perforations 

were analyzed (2/6 mm, 4/4 mm, or 6/2 mm). 

   
(a) (b) (c) 
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(d) (e) 

Figure 14. Stiffness degradation in a sample DW: (a) F-15; (b) F-30; (c) F-45; (d) F-60; (e) F-75. Three types of perforation 

were analyzed (2/6 mm, 4/4 mm, or 6/2 mm). 

In the process of cutting corrugated board, perforation may occur in various locations 

relative to the fluting position, therefore the impact of fluting shift on stiffness changes 

has also been analyzed. Figure 15 presents the values of the stiffness reduction depending 

on the location of the cut in relation to the fluting position for the SW and DW samples in 

three perforation varieties: 2/6 mm, 4/4 mm, and 6/2 mm. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 15. Stiffness degradation in sample C-0: (a) SW-26; (b) SW-44; (c) SW-62; (d) DW-26; (e) DW-44; (f) DW-62. 

Due to noticed increase of 𝑅44 and 𝑅55 stiffnesses (negative stiffness reduction val-

ues shown in Figure 15), non-perforated samples were also examined. The values of the 

stiffness reduction depending on the fluting shift for the SW sample are summarized in 

Table 10, whereas the values of the stiffness reduction depending on the fluting shift for 

the DW sample are listed in Table 11. 
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Table 10. Uncut samples SW. Stiffness reduction in terms of flute offset. 

Stiffness 

Reduction 

1/16 P 

(%) 

2/16 P 

(%) 

3/16 P 

(%) 

4/16 P 

(%) 

1−𝐴11/𝐴11
∗  −0.023 −0.121 −1.061 −0.055 

1−𝐴22/𝐴22
∗  −0.018 −0.061 −0.086 −0.003 

1−𝐴33/𝐴33
∗  −0.035 −0.089 −0.062 0.038 

1−𝐷11/𝐷11
∗  0.023 0.099 −0.687 0.059 

1−𝐷22/𝐷22
∗  0.018 0.053 −0.007 0.050 

1−𝐷33/𝐷33
∗  0.124 0.495 1.102 1.720 

1−𝑅44/𝑅44
∗  3.533 13.41 10.63 1.771 

1−𝑅55/𝑅55
∗  1.286 4.036 8.186 8.956 

* denotes the reference value of non-shifted flute. 

Table 11. Uncut samples DW. Stiffness reduction in terms of flute offset. 

Stiffness 

Reduction 

1/16 P 

(%) 

2/16 P 

(%) 

3/16 P 

(%) 

4/16 P 

(%) 

1−𝐴11/𝐴11
∗  −0.018 −0.094 −1.052 −0.037 

1−𝐴22/𝐴22
∗  −0.013 −0.044 −0.075 −0.003 

1−𝐴33/𝐴33
∗  −0.032 −0.082 −0.056 0.039 

1−𝐷11/𝐷11
∗  0.012 0.029 −1.048 −0.012 

1−𝐷22/𝐷22
∗  0.011 0.009 −0.062 0.021 

1−𝐷33/𝐷33
∗  −0.029 0.110 0.459 0.880 

1−𝑅44/𝑅44
∗  2.706 9.932 8.977 1.396 

1−𝑅55/𝑅55
∗  2.378 6.572 11.88 15.28 

* denotes the reference value of non-shifted flute. 

As the perforation process is inseparable from the crushing process, this effect on the 

reduction of stiffness has also been tested. The influence of additional crushing of 10, 20, 

and 30% of the initial height of the corrugated board on the stiffness degradation of SW 

and DW samples is presented in Figure 16. The comprehensive study of the impact of 

crushing on single-walled corrugated board is presented in a recent study of Garbowski 

et al. [44], while for the double-walled structures, see Gajewski et al. [45]. 

   
(a) (b) (c) 
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(d) (e) (f) 

Figure 16. Stiffness degradation in sample: (a) SW-26-C-0-R-xx; (b) SW-44-C-0-R-xx; (c) SW-62-C-0-R-xx; (d) DW-26-C-0-

R-xx; (e) DW-44-C-0-R-xx; (f) DW-62-C-0-R-xx. Here xx is a crush level (0%; 10%, 20%, and 30%). 

4. Discussion 

On the basis of the conducted analyses and the obtained results, it can be concluded 

that the perforations to a greater or lesser extent affected the stiffness degradation not only 

in the 𝐀 sub-matrix (responsible for the tensile/compression stiffness) and in the 𝐃 sub-

matrix (responsible for bending/torsion stiffness), but also in the 𝐑 sub-matrix (responsi-

ble for the transversal shear stiffness). 

For samples with different perforation orientations (see Figure 5), the reduction in 

stiffness was related to the rotation angle of the perforation. In the samples with a rotation 

angle below 30 degrees, the greatest reduction occurred for matrix elements with indices 

22 and 55. If the rotation angle was greater than 60 degrees, mainly matrix elements with 

indices 11 and 44 were reduced. This rule applied to both types of samples (i.e., SW and 

DW). When the perforation was rotated by an angle equal to 45 degrees, the matrix ele-

ments with indices 11, 22, 44, and 55 were evenly degraded. 

For 2/6 mm perforation in model SW (see Figure 12a), the maximum degradation did 

not exceed 10% and was applied to 𝐴22 (for perforation rotation angle < 30 degrees) and 

𝐴11, 𝐷11 (for perforation rotation angle > 60 degrees). It is worth noting that the decrease 

in the stiffness 𝐷22 and 𝑅55 for the rotation angle of the perforation equal to 0 degrees 

was relatively high and amounted to 5% for the perforation type 2/6 mm. The remaining 

stiffnesses degraded less than 3% in this case. A similar observation applied to the DW 

model (see Figure 12d). 

While considering the 4/4 mm type perforation (see Figure 12b), the observations 

were as follows: reduction of 𝐴22, 𝐷22 was about 25% for a perforation rotation of 0 de-

grees and about 0% for a 90-degree rotation; 𝑅55 degraded about 25% when the perfora-

tion was rotated by 0 degrees and about 10% when the perforation was rotated by 90 de-

grees; reduction of 𝐴33 and 𝐷33 was about 10% regardless of the perforation rotation an-

gle, while the degradation of 𝐴11 and 𝐷11 varied from around 0% to 30% for 0 degrees 

and 90 degrees, respectively; and the degradation of 𝑅44 did not exceed 5%. In the DW 

model (see Figure 12e), a similar decrease could be observed. The reductions 𝑅44 and 𝑅55 

look slightly different; this is related to a different ratio of the sample height to its dimen-

sions in the plan. 

The greatest reductions were observed for the sample with the 6/2 mm perforation 

type (see Figure 12c,f). This is obviously related to the largest cut-to-gap ratio (which 

amounts to 75% in this case). In the case of the SW model, both the stiffness reductions 

𝐴11 and 𝐷11  as well as 𝐴22 and 𝐷22  reached a maximum value of slightly more than 

50%. The reduction of 𝐴33, 𝐷33, and 𝑅55 varied between 15 and 30%. The 𝑅44 stiffness 

reduction was approximately 0% for the non-rotated perforation, while for the rotation 

angle of 90 degrees, it was about 20%. A very similar stiffness degradation could be ob-

served for the DW model (see Figure 12f). 
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For samples with different fluting orientations (see Figures 13 and 14), the greatest 

reduction in stiffness always occurred in the direction perpendicular to the perforation 

(i.e., (∗)22 and (∗)55), regardless of material orientation. Both 𝐴22 and 𝐷22  stiffnesses 

had the greatest reductions and amounted to about 50% in the case of 6/2 mm perforation 

for all fluting orientations. Slightly smaller reductions in stiffness were observed for 𝑅44, 

𝐴33, and 𝐷33 ranging from 15 to 30% (for 6/2 mm perforation type), depending on the 

orientation of the fluting. The smallest stiffness reductions were observed for 𝐴11, 𝐷11, 

and 𝑅55. 

When analyzing the stiffness reductions for models with shifted fluting (see Figure 

9), even in the case without perforation, slight differences in stiffness could be observed 

(see Tables 10 and 11) and concerned mainly 𝑅44 and 𝑅55. Small fluctuations were also 

observed in models with perforation for both cases of SW and DW (see Figure 15), where 

again, the 𝑅44 and 𝑅55 showed the greatest dependence on fluting shift. 

By also adding to the model the crushing of fluting (see Figure 8) that accompanies 

the perforations during the treatment of corrugated board, the degradation for some stiff-

nesses can increase several times (see Figure 16). The more perforated the model (i.e., 6/2 

mm perforation type), the smaller the further reductions in the stiffness 𝐴22, 𝐷22, and 

𝑅55. The remaining stiffnesses were drastically reduced with the increase in the crushing 

of the cross-section of the corrugated board. It is worth noting that for the DW model, the 

stiffnesses reduction of 𝐴11, 𝐴22, and 𝐴33 did not depend on the amount of crushing. 

5. Conclusions 

This article presents the comprehensive numerical analyses of the effect of perfora-

tion on reducing stiffness while implementing homogenization techniques. The acquired 

knowledge can be used for numerical modeling, for example, of corrugated cardboard 

packaging with perforations. Knowing the specific values of the stiffness reduction, it is 

possible to correctly model the perforation line and thus accurately estimate the load ca-

pacity of the packaging. The reduction in individual stiffnesses depends not only on the 

type of perforation, but also on the orientation of the perforation and the orientation of 

the fluting, but does not depend on the location of the perforation along the wavelength. 

Further development of the launched research is planned related to the validation of the 

proposed model with experimental models while engaging the non-contact displacement 

measurements [46]. 
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