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Abstract: This paper presents a modified analytical formula for estimating the static top-to-bottom
compressive strength of corrugated board packaging with different perforations. The analytical
framework is based here on Heimerl’s assumption with an extension from a single panel to a full box,
enhanced with a numerically calculated critical load. In the proposed method, the torsional and shear
stiffness of corrugated cardboard, as well as the panel depth-to-width ratio is implemented in the finite
element model used for buckling analysis. The new approach is compared with the successful though
the simplified McKee formula and is also verified with the experimental results of various packaging
designs made of corrugated cardboard. The obtained results indicate that for boxes containing
specific perforations, simplified methods give much larger estimation error than the analytical–
numerical approach proposed in the article. To the best knowledge of the authors, the influence of
the perforations has never been considered before in the analytical or analytical–numerical approach
for estimation of the compressive strength of boxes made of corrugated paperboard. The novelty of
this paper is to adopt the method presented to include perforation influence on the box compressive
strength estimation.

Keywords: corrugated board; McKee formula; buckling; orthotropic panels; laboratory tests; box
strength; crease; perforation

1. Introduction

Shelf-ready packaging (SRP) is playing an increasingly important role in the modern
industry, including the supply and sales market. The main task of SRP is to ensure safe
transportation and storage of products in packaging and then putting them directly on
shelves without unpacking individual goods. Application of SRP leads to the reduction
of costs related to the work of employees and helps to save time. Therefore, tedious
unpacking of products on the shelf has been reduced to a few seconds. The SRPs are made
of corrugated cardboard with different perforations, which enable easy separation of the
lower part of the packaging, called the tray, and the upper part of the packaging, called the
cover. On the other hand, perforations can significantly influence the mechanical strength
of boxes made of corrugated paperboards [1]. It reduces the integrity of the wall. Thus, the
final compression strength of the box would also decrease. In this paper, the strength of
boxes with perforations is investigated.

Performing physical experiments allows for the design and development of paper-
board or corrugated cardboard boxes, to ensure their proper mechanical strength. It strictly
depends on two characteristic in-plane directions of the corrugated cardboard. They are
related to fluting; the first direction, called machine direction (MD), is perpendicular to the
main axis of it and parallel to paperboard fiber alignment. The second one, called cross
direction (CD), is parallel to the fluting.
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In the packing industry, the strength of corrugated cardboard boxes can be examined
by carrying out some leading physical tests. The most important, from a practical point of
view, are the compressive, tensile, or bursting strength tests. The most common tests of
packaging are the box compression test (BCT) and the edge crush test (ECT) for corrugated
cardboard. Performing physical experiments is always time- and cost-consuming. Thus,
recently, there have been some alternatives for the examination of corrugated cardboard
boxes to determine their strength only by physical testing.

The first one is the prediction of compressive strength based on the formulas published
in the literature. One advantage of such an approach is its simplicity, which makes it very
easy and fast to apply in the real world, without the need of performing any additional
experiments. Three groups of parameters used in these formulas proposed in the literature
over the years can be distinguished. They include parameters of paper, board and box,
respectively [2]. The most common formula in the packaging industry is the approach
presented by McKee, Gander, and Wachuta in 1963 [3]. The authors formulated a relation-
ship between the box perimeter and two corrugated board parameters, which are ECT and
flexural stiffness. Two earlier approaches also took into account parameters of the paper-
board [4,5]. However, one can notice that the formula proposed by McKee et al. is accurate
only for some relatively simple containers. In the literature, there were some attempts
for improving accuracy and extending the applicability of the analytical formulas for pre-
diction of compressive box strength. Allerby et al. proposed a modification of constants
and exponents in the original McKee’s relationship [6]. Schrampfer et al. modified the
McKee’s approach, allowing to extend the applicability of the formula for a wide range of
cutting methods and equipment [7]. Batelka et al. also took into account dimensions of the
box [8], while Urbanik et al. included the Poisson’s ratio [9]. The constants in the original
McKee’s formula was later analyzed for more complicated cases and was recently modified
by Aviles et al. [10] and later by Garbowski et al. [11,12]. The compression strength of
boxes made of corrugated paperboard [13] can be affected by many factors, including the
moisture content of the box [14,15], the existence of openings [12,16], storage time, stacking
conditions [17], and many others.

The other alternative is a purely numerical method, which may be applied to in-
vestigate box compression strength. The most popular method in engineering is the
finite element method (FEM). It was applied in many problems related to the strength
of corrugated boxes. They include research on transverse shear stiffness of corrugated
cardboards [18–21] or buckling and post-buckling phenomena [22].

One important step in the numerical analysis of corrugated cardboards is homoge-
nization [23–26]. It allows simplifying the analyzed models, saving time on calculations by
ensuring adequate accuracy of the results. As a consequence of the homogenization process
of layered materials, one can obtain a single layer described by effective properties of the
composite instead of the structure of layers made of different materials. Hohe proposed a
method of homogenization based on strain energy [27]. It is suitable for sandwich panels.
In his approach, there is an assumption of equivalence of a representative element of the
homogenized and heterogeneous elements. Buannic et al. proposed a periodic homogeniza-
tion method. In this approach, an equivalent membrane and pure bending characteristic
of period plates are obtained [28]. They also modified their approach for the analysis of
sandwich panels to take into consideration the transfer shear effect. Biancolini obtained
the stiffness properties of the sandwich panel using the energy equivalency between the
considered model and the plate, and applying the FEM in the analysis of a micromechanical
part of the plate [29]. In the approach presented by Abbès and Guo, the considered plate
is decomposed into two beams in directions of the plate [30]. It allows calculating the
torsion rigidity of the orthotropic sandwich plates. Another approach to a homogenization
of composite materials may be the measurement of the effective properties based on a
correctly designed or a selected set of laboratory experiments performed directly on the
composite. Such a technique is applied in this study.
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In the literature, one can also find investigations on the influence of creasing on
the mechanical strength of corrugated paperboard. Creasing is a process, in which fold
and perforation lines are manufactured. These lines reduce the strength of corrugated
paperboard. In 2008, Thakkar et al. compared the results from the experiments and
numerical simulations based on the FEM to investigate the influence of the creasing on the
local strength of corrugated paperboard [31]. Later, Beex and Peerlings performed physical
and numerical experiments related to influence of creasing and subsequent folding on the
mechanical properties of the laminated paperboard [32]. Giampieri et al. [33] proposed a
constitutive model for the mechanical response of creased paperboard after folding. The
FEM simulations of paperboard creasing and folding useful for the packing industry and
important from a practical point of view has been presented by Domaneschi et al. [34].
Awais et al. [35] and Leminena et al. [1] investigated, experimentally and numerically, the
influence of the crease on the mechanical properties of the paperboard during the press
forming process. However, to the best knowledge of the authors, there are no papers on the
influence of perforations on the strength of the whole boxes made of corrugated cardboard.

In this paper, a modification of the analytical–numerical approach is proposed for
corrugated boxes with perforations. The article verifies the influence of perforation on the
compressive strength of corrugated cardboard boxes with a modified analytical formula,
through a numerically aided calculation of the critical load. Furthermore, the applicabil-
ity of the approach presented in [11,12,20,21] for corrugated cardboard boxes has been
extended to cases of the SRPs with different perforations.

2. Materials and Methods
2.1. Ultimate Compressive Strength of a Plate

In order to compute the ultimate load on the box in a static top-to-bottom compres-
sion test, see Figure 1c, one can follow an idea presented by Heimerl [36], later used by
McKee et al. [3] and recently extended by Garbowski et al. [11,12]. The basis of this ap-
proach was the calculation of the ultimate load, Pf , of each separated panel (see Figure 1a)
using the edge-loaded compressive strength of corrugated board, ECT, and a critical load,
Pcr, resulting from the buckling phenomenon:

Pf

Pcr
= k

(
ECT
Pcr

)r
, (1)

where k is a constant, r is an exponent, r ∈ (0, 1) (most often due to empirical fitting
r ∈ [0.5, 0.75]; [9]), ECT is given in N/mm, and Pcr is given in N/mm.

Figure 1. (a) A panel b × a separated from corrugated box as a pined plate under in-plane compression; (b) corrugated
board packaging with perforations; (c) box compression test (BCT) press used in laboratory tests [37].
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In Equation (1), only elastic buckling is took into account. This approach was later
modified by Urbanik et al. [9,18] in order to also take into consideration the nonlinear
material effects by the following:

Pf

ECT
= k

(
Pcr

ECT

)un
, (2)

where n = 1− r. If ECT > Pcr, than u = 1, which corresponds to the situation when elastic
buckling is activated first, otherwise, u = 0, which corresponds to the situation when the
ultimate load Pf depends only on ECT, namely:

Pf = k ECT. (3)

In any case, the critical load for a rectangular orthotropic plate (see Figure 1a) can be
assumed as [38–40]:

Pb
cr = kcr

π2 √D11D22

b2 , (4)

where Pb
cr is the critical load of the panel of dimensions a× b (height and width, respec-

tively), kcr is a dimensionless buckling coefficient, which depends, e.g., on the ratio a/b,
boundary conditions applied to the plate edges, material characteristics, the buckling
mode, etc.; D11 is the bending stiffness in the MD, in Nmm, D22 is the bending stiffness in
the CD in Nmm and b is the plate width in mm.

Mechanical properties of the corrugated cardboard depend on the direction (CD or
MD), which is typical for fibrous materials. Therefore, the buckling coefficient can be
assumed as [39]:

kcr =

√
D11

D22

(
mb
a

)2
+ 2

(D12 + 2D33)√
D11D22

+

√
D22

D11

( a
mb

)2
, (5)

where m is the number of half-waves in the direction of loading; a is panel height in mm;
D33 is the torsional stiffness in Nmm; D12 = ν21D11 = ν12D22 in Nmm; ν12 and ν21 are the
effective in-plane Poisson’s ratios of the panel.

2.2. Buckling—Finite Element Method

In our case, the panel may contain various types of perforations with different posi-
tions, slopes, etc. Such a situation requires the definition of the buckling coefficient of a
panel-by-panel basis, which leads to difficult and time-consuming development of analyti-
cal formulas. In such a case, the FEM is much more general because it allows determining
the critical load of panels with any shape and boundary conditions, including perforations,
even with complex shapes. In this study, the critical load of each panel was calculated
using a three-dimensional (3D) finite element (FE) model, where all outer edges are fixed in
the out-of-plane direction (see dashed lines in Figure 1a). Moreover, the bottom edge was
fixed in the vertical direction. The remaining translations and all rotations were inactive.
The critical load in the general case reads [40]:

Pb
cr = λq, (6)

where λ is a critical loading multiplier, i.e., the smallest eigenvalue and q is a distributed
load on a panel upper edge [Nmm].

In order to calculate the critical force multiplier, the typical formulation of initial
buckling problem is required:

[K0 + λKσ]v = 0, (7)

where K0 is the global stiffness matrix of the whole panel and Kσ is an initial geometrical
stress matrix of the whole panel.
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By solving the eigenvector problem, it is possible to determine the pairs
(λ1, v1), . . . , (λN , vN), where N is the number of degrees of freedom, λi is i-th eigenvalue,
vi = ∆di is i-th eigenvector (post-buckling deformation mode). The minimum eigenvalue
and the corresponding eigenvector define the critical load multiplier and the buckling
mode of the panel. More details are provided in our previous article [12].

In our case, the geometry of each panel does not have to be regular, as well as the
position and shape of the perforations can be chosen arbitrarily. Therefore, the triangular
shell FE was adopted, see Figure 2a. Due to shear locking that can occur in FE formulation
of thick plates, most of the Reissner–Mindlin FE triangular shells were developed using the
assumed transverse shear strain techniques [41–43]. Here, the 6-noded quadratic triangle FE
with a standard quadratic interpolation for the deflections and rotations, and the assumed
linear transverse shear strain field was utilized. More details on the implementation of this
FE, including shear locking description, can be found in our previous article [12].

Figure 2. (a) Triangular mesh on a single panel with perforation; (b) spring connection between two parts separated by a
perforation; (c) thickness reduction of elements adjacent to perforation.

2.3. Finite Element Model of a Single Panel Used in the Buckling Analysis

A new issue, not addressed in our previous article [12], concerns perforations, i.e.,
crease lines and partial cuts on vertical panels of the box, which is a non-trivial task when
they need to be included in numerical calculations. The computational model used in
our study to estimate the critical load of each panel is based on the FEM. Therefore, it is
required to define the panel geometry, its boundary conditions, and the constitutive model
of the corrugated boards, as well as to define the perforation lines behavior.

In order to compute the critical load of each vertical panel of the box, we used the
6-node FE described in the previous section and in [12]. An in-house routine, written in
MATLAB software, was used for all analyses. Because the eigenvalue buckling prediction
belongs to the linear perturbation procedures, we need to define only a linear elastic
behavior. To correctly identify whole elastic material properties of corrugated cardboard,
it is necessary to perform some laboratory tests, e.g., ECT, 4-point bending test, torsional
stiffness test (TST), etc. In this study, we used a box strength estimation (BSE) system, which
allows performing four independent tests in two main directions of corrugation and is able
to identify all elastic parameters of corrugated board (www.fematsystems.pl/systems/BSE).
The following parameters describe the behavior of corrugated board in the elastic range:

• D11—bending stiffness in the MD;
• D22—bending stiffness in the CD;
• D66—twisting bending stiffness;
• A11—compression stiffness in the MD;
• A22—compression stiffness in the CD;
• A33—compression stiffness in the z direction (out of plane);
• A44—transverse shear stiffness in the 1–3 (x–z) plane;
• A55—transverse shear stiffness in the 2–3 (y–z) plane.

www.fematsystems.pl/systems/BSE
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These stiffnesses are used in the constitutive equations that describe shell FE [21]:

A =

 A11 A12 0
A12 A22 0
0 0 A33

, (8)

D =

 D11 D12 0
D12 D22 0

0 0 D33

, (9)

Γ =

[
A44 0
0 A55

]
, (10)

and are represented by the following formulas:

D11 = E1 ×
t3

12w
, D22 = E2 ×

t3

12w
, (11)

D12 = D21 = D22ν12 = D11v21, (12)

D33 = G12 ×
t3

12
, (13)

A11 = E1t, A22 = E2t, (14)

A12 = A21 = A11ν21 = A22ν12, (15)

A33 = G12t (16)

A44 =
5
6

G13t, (17)

A55 =
5
6

G23t, (18)

w = 1− ν12ν21 (19)

where:

• t—effective cardboard thickness;
• E1—effective stiffness modulus in the MD;
• E2—effective stiffness modulus in the CD;
• ν12 = 0.293

√
(E1/E2)—effective Poisson’s ratio in the 1–2 (x–y) plane;

• v21 = v12 E2/E1—effective Poisson’s ratio in the 1–2 (x–y) plane,
• G12—effective shear modulus in 1–2 (x–y) plane,
• G13—effective transverse shear modulus in the 1–3 (x–z) plane,
• G23—effective transverse shear modulus in the 2–3 (y–z) plane.

Having the geometry of all panels, the adopted boundary conditions and the corru-
gated board constitutive model defined above, all that remains is to define the behavior
of perforation lines. In order to include the mechanical properties of perforations in the
numerical model, two techniques are used here, namely: (a) spring connection between
the parts separated by perforation, see Figure 2b, and (b) thickness reduction of the ele-
ments adjacent to the perfection, see Figure 2c. The first technique is to divide the panel
with the perforation line, duplicate the mesh nodes, and add spring joints at each of the
6 degrees of freedom at each duplicated node. The second technique is to search for all
elements adjacent to the perforation line, sort them by the number of nodes lying on the
perforation line, and reduce the thickness of these elements (due to creasing techniques
used to produce perforations). Figure 2c shows the elements, in which the thickness was
reduced. Element color indicates the amount of reduced thickness; the darker the color,
the greater the reduction. Both spring stiffness and thickness reduction depends on the
definition of perforation, its geometrical pattern, and shape. In each case, the influence
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of the perforation on the calculation results can be observed both in the decrease of the
critical force, as well as in the compression force/reaction.

No specific mesh study was performed here, as buckling analysis is a linear perturba-
tion procedure, where the sensitivity of the critical load concerning mesh size is low. In all
computations, we used the seed value 1/10 of the mean edge length of the analyzed panel
(see Figure 2a).

2.4. Box Compression Strength—McKee’s Formula

In order to compute failure load of a single panel, we substitute the buckling force
derived from Equation (4) into Equation (1), after [3] we have:

Pf = k1ECTr
(√

D11D22

)1−r
Z−2(1−r), (20)

where k1 = 1.33 k (4π)2(1−r) ∼= 2.028, while r = 0.746 and k = 0.4215.
To obtain the failure load for the whole corrugated box, BCT, it is sufficient to multiply

the Equation (20) by the box perimeter Z. This is related to the Mckee et al. assumption [3],
details can be found in [11,12]. Thus, the ultimate compressive strength, also known as the
long McKee formula, reads:

BCTMK1 = k1ECTr
(√

D11D22

)1−r
Z2r−1. (21)

A further simplification, due to the empirical observations of McKee et al., leads to a
final form of well-known short McKee’s formula:

BCTMK2 = 5.874 ECT h0.508Z0.492. (22)

It is the most widely used formula. However, its accuracy is only acceptable for the
simplest boxes. If the ratio of length to width or height to length of the box is relatively high,
the McKee formula is no longer valid [11]. The same limitations apply if the box contains
any perforations. To overcome this limitation, it is sufficient to derive in Equation (1) the
critical load calculated by numerical methods instead of analytical formulas. Both will be
shown in the following sections.

2.5. Box Compression Strength—General Case

In order to obtain the compressive strength of the box, BCT, the ultimate loads for
each panel must be summed up, whereas the compressive load of each panel (see Figure 1a)
can be calculated by multiplying the value of the force Pf described by the Equation (1) by
the width of the i-th panel b or c. Thus, in a general case, we get the following:

BCT = k ECTr

(
2

∑
i=1

[(
Pb

cr

)1−r

i

(
γb

p

)
i

]
γbb +

2

∑
i=1

[
(Pc

cr)
1−r
i

(
γb

p

)
i

]
γcc

)
, (23)

where (·)i indicates the i-th panel of width b or c (i = 1, . . . , 2). Pb
cr and Pc

cr are the critical
forces of panels of width b and c, respectively (see Figure 1a). γb

p and γc
p are the reduction

factors taking into account the ratio of the compressive strength of the plate with and
without the perforations for plate width b and c, respectively. γb and γc are the reduction
coefficients due to the in-plate aspect ratio of the box dimensions, defined as:

γb =
√

b/c, γc = 1 i f b ≤ c, (24)

γc =
√

c/b, γb = 1 i f b > c. (25)



Energies 2021, 14, 1095 8 of 14

3. Results

In this section, the results of boxes are presented for both physical tests and numerical
simulations. The boxes selected in the study represent a common flap box design of FEFCO
201, although with perforations included on the front and sidewalls. One box design was
considered with dimensions of 300 × 200 × 300 mm. All boxes considered here had the
same overall design. However, it was considered with three types of different perforations
of the SRP type, see Figure 3 (cf. see Figure 1b). The perforations were on three walls, in
which, on two opposite walls they were diagonally inclined (30 mm from both corners),
and on one wall, in-between wall, the perforation was horizontally positioned (30 mm
from the bottom).

Figure 3. Schematic designs of FEFCO 201 box with different perforations considered in the study: (a) 25 × 75, (b) 50 × 50
and (c) 75 × 25.

In the study, the perforations were described by two values, namely, A × B, where
A means the percentage of the length of 10 mm, in which the knife cut the corrugated
cardboard, and B means the percentage of the length of 10 mm, in which the corrugated
cardboard was intact. Thus, the following perforations were considered in the study:
25 × 75, 50 × 50 and 75 × 25 (in decreasing order of perforation/box strength).

The boxes selected in the study were subjected to compression in a strength testing
machine, namely BCT-19T10 from FEM at [37]; see Figure 1c. According to the specification,
the testing machine has a 0.1 N resolution of force control and may induce the force
up to 10 kN. The displacement may be controlled with 0.001 mm accuracy. For each
type of perforation, five box samples were tested to acquire a representative result. For
50 × 50 perforation, one of the test results was rejected due to unusual deformation mode.
Thus, finally, 14 measurements of ultimate loads of boxes with perforations were used in
the study, see Table 1. In Table 1, the mean values computed with two standard deviations,
which, for the normal distribution, accounts for 95.5% of cases for each box design, are
also presented.

The samples were produced from the same corrugated cardboard, namely single-side
three-layer quality with E flute of 450 g/m2 (marked as 3E450-1). Cardboard thickness
measured was from 1.58 mm to 1.60 mm, with the mean equal to 1.59 mm. Each box sample
was cut by plotter and manually folded; at the top and bottom, the flaps were taped. Since
the plotter was used, no converted corrugated cardboard, i.e., raw cardboard material
without printing, lamination, etc., was taken into consideration in this study. Before and
after the test, the cardboard/box samples were visually inspected for any damages or
unusual issues. Boxes were subjected to a displacement control test. The resultant force
was registered by the testing machine (no additional strain gauges were used). Cardboard
was laboratory conditioned with a temperature of 23◦C ± 1◦C and relative humidity
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of 50% ± 2%, TAPPI standard T402 was used. In Figure 4, the full histories of the box
measurements are presented. The histories represent the force versus displacement data
obtained from the strength testing machine [37]. Note that good repeatability of the
histories of the measurements was observed.

Table 1. Experimental ultimate loads of boxes tested in the study with different perforation types.

No. Type of Perforation Ultimate Load (N) Mean Ultimate Load ± 2
Standard Deviations (N)

1

25 × 75

1033.0

1020 ± 77.8
2 1078.0
3 1003.0
4 974.7
5 1009.0

6

50 × 50

1050.0

1002.0 ± 98.4
7 933.6
8 1017.3
9 1007.0

10

75 × 25

987.8

939.3 ± 95.6
11 979.6
12 944.9
13 899.1
14 880.2

Figure 4. Measurements from a box compression test machine [37] for FEFCO 201 box with different perforations: (a)
25 × 75, (b) 50 × 50 and (c) 75 × 25.

The experimental results, namely, the mean ultimate loads computed from the peak
forces (presented in Figure 4 and Table 1), were used to verify the approach proposed
in the paper, see Equation (23). According to the proposed method, the critical buckling
loads from the first buckling mode of all box panels (computed separately; with and
without perforations) were computed via the FE model to use them in Equation (23). In
Supplementary Materials, the data were attached, which feed the Equation (23), and served
to compute the estimations of the ultimate loads of boxes with perforations. In Table 2, the
material constants were demonstrated, which were the input for the constitutive law used
in the FEM computations. Apart from the mean values, in order to show the uncertainty of
the data, the minimum and maximum values were also presented. Moderate scatter of the
material constants was observed.
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Table 2. Material characteristics for 3E450-1 cardboard quality, which were used in the finite element
method (FEM) to determine the critical buckling loads of the panels [44].

3E450-1 Thickness
(mm) ECT D11

(Nmm)
D22

(Nmm)
D33

(Nmm)
A44

(N/mm)
A55

(N/mm)

mean 1.589 5.299 1261 507.8 1036 3.904 4.074
min 1.582 5.028 1206 469.2 967 3.743 3.691
max 1.596 5.574 1318 547.3 1115 4.077 4.498

The data used in Table 2 and the selected equations presented earlier may be used
to determine the typical set of elastic orthotropic material constants. One of the issue to
address is to compute w, which, according to Equation (19), depends on the Poisson’s
ratios, v12 and v21. Here, the Baum et al. [45] formula was used to compute v12, namely:

ν12 = 0.293

√
E1

E2
, (26)

In the above equation, the relation E1/E2 was obtained from Equation (11); thus, we
may write the following formula:

E1

E2
=

D11

D22
. (27)

On the other hand, the ratio v21 was computed from the classic formula, namely:

ν21 = ν12 ×
E2

E1
, (28)

In the above equation, the following relation, derived again from Equation (11), may
be used:

E2

E1
=

D22

D11
. (29)

Finally, having w, allows us to compute E1 and E2 from the Equation (11). Similarly,
G12 was computed from Equation (13); G13 and G23 were obtained from Equation (17) and
Equation (18), respectively. The computed material constants are presented in Table 3;
mean, minimal, and maximal values are demonstrated.

Table 3. Elastic orthotropic parameters for 3E450-1 cardboard quality computed from stiffnesses, see
Table 2.

3E450-1 E1 (MPa) E2 (MPa) v12 (-) v21 (-) G12 (MPa) G13 (MPa) G23 (MPa)

mean 3451 1390 0.461 0.184 3099 2.95 3.08
min 3340 1301 0.450 0.183 2931 2.84 2.80
max 3560 1478 0.470 0.189 3291 3.07 3.38

In Figure 5, the mean data from the physical measurements, and estimated counterpart
values were presented by the bar plot. Black bars represent the mean values measured
at the laboratory, see the last column in Table 1. The values obtained from the analytical–
numerical approach proposed are presented by light blue plot, see Equation (23). In the
analytical–numerical approach presented, k and r used were k = 0.4 and r = 0.75.
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Figure 5. Box compression strength obtained within different approach for shelf-ready boxes considered in the study with
various perforations, i.e., 25 × 75, 50 × 50 and 75 × 25.

The comparison between the measured and estimated values of ultimate loads of the
boxes with perforations may be represented by the mean error. It was computed for all
three cases according to the following formula:

error =

∣∣∣∣∣BCTexp − BCTest

BCTexp
× 100%

∣∣∣∣∣, (30)

where BCTexp is an experimental value of the box compression strength averaged for four
or five samples with peculiar perforation, and BCTest is its counterpart computed by the
analytical–numerical approach proposed in this paper. The average error, while using the
analytical–numerical approach for the boxes analyzed in this paper was 3.5%.

A similar comparison with the experimental values may be considered for the esti-
mation via McKee formula—the approach, which is easy, and thus in common use in the
packaging industry. The results were presented by red bars in Figure 5, see Equation (30).
Similarly, the mean error for the McKee formula was computed, it was equal to 19.5%. The
summary of the mean errors is presented in Table 4.

Table 4. The mean error for estimations of McKee formula and the method proposed.

Case k (-) r (-) Mean Error (%)

McKee formula 0.4215 0.746 19.5
method proposed 0.4 0.75 3.5

4. Discussion

The analytical–numerical method proposed here shows the correct trend while com-
paring it with the experimental results. Namely, with decreasing stiffness of the perforation,
the strength of the box also decreases. Experimental results show that, if the box with
50 × 50 perforation would be the reference, the strength increase for 25 × 75 is 2.0%, while
for 75 × 25 the decrease equals 6.3%. For the analytical–numerical approach proposed,
the counterpart values are 8.4% and 6.5%, respectively. For the McKee formula, the values
are constant for all three boxes. Moreover, note that the average error computed for the
method proposed here was more than five times smaller than for the McKee formula, i.e.,
3.5% vs. 19.5%, respectively. This is the most important conclusion from our study. The
proposed approach is much more accurate than a simplified method.

In the study presented, all designs of the boxes, due to the same overall geometry, had
1000 mm of the in-plane circumference. This caused the strength of the boxes to be the same
for all three box designs with perforations, while considering the McKee formula approach,
see Figure 5. The McKee formula does not include the information about perforations in
the box design.
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Many challenges are still actual in the mechanics of corrugated cardboards and pack-
aging due to the nonlinear material and the nonlinear/discontinuous geometry of the
designs. Previously, the box strength was computed with the simplified formulas, which
currently does not provide sufficient accuracy to the increasing needs of the packaging
industry. This was proved by our recent series of publications, namely in [11,12,20,21].

5. Conclusions

In this study, the boxes made of corrugated cardboards with knife-cut perforations
were analyzed. The box designs selected for the study represented the SRPs. Three types
of perforations were considered, namely, 25 × 75, 50 × 50, and 75 × 25, in which the
first value represents the percentage of the length of 10 mm, at which the knife cut the
corrugated cardboard, and the second value represents the percentage of the length of
10 mm, at which the corrugated cardboard was intact.

In the first part of the study, the series of top-to-bottom compression strength tests of
boxes were conducted to determine their experimental ultimate loads. In the second part
of the study, the analytical–numerical approach was proposed to take into consideration
the different properties of perforations in modeling. In the third part of the study, the
boxes with their peculiar design of perforations were modeled with simplified (McKee
formula) and proposed the analytical–numerical approach. The tests conducted in the first
part served to verify the modeling approach proposed in the second part of the study. In
the third part of the study, it appeared that the approach proposed in the paper gave very
low mean estimation error in comparison with the reference simplified (McKee formula)
approach; the mean error was only a few percent. The McKee formula approach was
presented to contrast the influence of the perforation on the estimation of the box ultimate
load, according to the classical approach still widely used by the lab technicians. Thus, it
can be concluded that the method presented in the study is a promising tool for determining
the strength of perforated boxes, which are commonly used in the supply and sales market.
To the best knowledge of the authors, the influence of the perforations has never been
considered before in the analytical or analytical–numerical approach for estimation of the
compressive strength of boxes made of corrugated cardboard. The novelty of the presented
work is the use of the analytical–numerical method, which finally takes into account the
impact of perforation on the evaluation of the compressive strength of the SRP packaging.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-107
3/14/4/1095/s1. In the TXT file, the computational results based on the method proposed, in which
Figure 5 was generated are presented. In this file, the 1st and 2nd columns are k and r parameters;
the 3rd column is the ECT value for particular cardboard quality; the 4th to 7th columns are critical
loads of the i-th panel (obtained from FEM); the 8th to 11th columns are the reduction factors due
to the in-plate aspect ratio of the box panel, γi, where i = {1, 2, 3, 4} and denotes the number of
the panel. The 12th to 15th columns are the reduction factors, taking into account the ratio of the
compressive strength of the plate with and without a perforation γpi, where i = {1, 2, 3, 4} and
denotes the number of the panel. The 16th to 19th columns are the widths of the i-th panel of the box.
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